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We study the mixed-state entanglement structure of chaotic quantum many-body systems at late times
using the recently developed equilibrium approximation. A rich entanglement phase diagram emerges
when we generalize this technique to evaluate the logarithmic negativity for various universality classes of
macroscopically thermalized states. Unlike in the infinite-temperature case, when we impose energy
constraints at finite temperature, the phase diagrams for the logarithmic negativity and the mutual
information become distinct. In particular, we identify a regime where the negativity is extensive but the
mutual information is subextensive, indicating a large amount of bound entanglement. When applied to
evaporating black holes, these results imply that there is quantum entanglement within the Hawking
radiation long before the Page time, although this entanglement may not be distillable into Einstein-
Podolsky-Rosen pairs. We claim that at this earlier time, rather than the Page time, information about
diaries thrown into the black hole first starts to leak out.
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Introduction.—The entanglement of a bipartite system,
HA ⊗ HB, in a pure state can heuristically be captured by
some number of Einstein-Podolsky-Rosen (EPR) pairs, as
it is always possible to convert the pure state into these EPR
pairs and vice versa using quantum operations that are local
to HA or HB, respectively, as well as classical communi-
cations between observers local to HA and HB (known as
LOCC). This kind of interpretation becomes more com-
plicated for mixed states. The interconversion between
mixed states and EPR pairs is, in general, irreversible; the
number of EPR pairs needed to prepare the state using
LOCC operations (so-called entanglement cost) can be
greater than the number that can be extracted from it
(distillable entanglement) [1]. In particular, there exist
bound-entangled states [2], defined as states which have
nonzero entanglement cost, but from which no EPR pairs
can be distilled.
While mixed-state entanglement carries important physi-

cal information, the corresponding operational measures
such as entanglement cost and distillable entanglement are
extremely hard to calculate even for few-qubit systems. The
logarithmic negativity provides a more calculable measure
[3–9] but is still very difficult to compute in many-body
systems and field theories.

To define the logarithmic negativity, we consider a
(generally mixed) density matrix ρAB. The partial transpose
with respect to HB is defined as having matrix elements
ha1;b1jρTB

ABja2;b2i¼ha1;b2jρABja2;b1i, where ja; bi forms
a basis. Unentangled mixed states are separable, of the
form

ρAB ¼
X
i

piρ
ðiÞ
A ⊗ ρðiÞB ; ð1Þ

and their partial transpositions are positive operators. The
logarithmic negativity captures the nonseparability (entan-
glement) in the density matrix by quantifying how negative
the partially transposed operator is,

EðA;BÞ ¼ log jρTB
ABj1; ð2Þ

where j · j1 is the one-norm. Separable states have trivial
negativity, so states with nonzero negativity are necessarily
entangled. Crucially, the mutual information, defined as
IðA;BÞ ¼ SðρAÞ þ SðρBÞ − SðρABÞ, does not measure
entanglement, because it may be nonzero even for sepa-
rable states. Here, SðρÞ ≔ −Trρ log ρ is the von Neumann
entropy.
In this Letter, we generalize a method developed in

Ref. [10], called the equilibrium approximation, to obtain
the logarithmic negativity of a macroscopically equilibrated
mixed state. The approximation applies to general chaotic
systems at late times, when the macroscopic properties of
the state, such as expectation values of local operators, are
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close to those of a thermal ensemble, although the state is
far from the thermal density matrix by measures like trace
distance. We find that there can be a rich entanglement
structure, captured by an intricate entanglement phase
diagram. A particularly surprising result is that, in the
thermodynamic limit, there can be a finite region in the
parameter space where the logarithmic negativity is exten-
sive but the mutual information is subextensive, implying
that there is a large amount of bound entanglement. This
phenomenon does not take place in the infinite-temperature
case previously studied in Ref. [11] but arises in a variety of
universality classes of equilibrated states at finite temper-
ature studied here.
A main physical application we have in mind is an

evaporating black hole. Consider a black hole formed from
the gravitational collapse of matter in a pure state. The
black hole emits Hawking radiation and eventually evapo-
rates completely. The dynamics of black holes are expected
to be highly chaotic. Hence, if the evaporation process
respects the usual rules of quantum mechanics, general
results on the quantum-informational properties of a
chaotic quantum many-body system can be used to make
predictions about the black hole and its radiation. The
verification of such predictions using gravity calculations
can then provide highly nontrivial checks of the consis-
tency of black hole physics with quantum-mechanical
principles and can also lead to new insights into quantum
gravitational dynamics. One good example is the celebrated
Page curve, a prediction for the time evolution of the
entanglement entropy of the radiation [12,13]. This curve
was recently derived in Refs. [14–17] with gravity calcu-
lations, which not only confirmed that black holes obey
unitarity, but also revealed new geometric features known
as “islands” and “replica wormholes.”
The evaporation process is very slow in microscopic

scales, so that at any time in the process we can treat the
remaining black hole as well as the radiation as being in
macroscopic equilibrium. Page considered the von
Neumann entropies of the black hole and the radiation
at infinite temperature. However, in general, it is important
to study the entanglement structure at finite temperature
and also to probe it with other quantum-informational
quantities such as logarithmic negativity. The general
results obtained in this Letter serve as predictions for the
entanglement structure within the radiation at both infinite
and finite temperatures. At infinite temperature, before
the Page time, the radiation is maximally entangled with the
black hole, and there is no entanglement within the
radiation itself. In contrast, at finite temperature, we find
that there is a new timescale tb before the Page time tp,
when nontrivial entanglement within the radiation starts to
emerge (see Fig. 1). For t ∈ ðtb; tpÞ, the entanglement is
bound entanglement; that is, it cannot be distilled into EPR
pairs using LOCC. [It remains a logical possibility that EPR
pairs may be distillable using quantum operations that

preserve positivity of the partial transpose (PPToperations)
or that the distillable entanglement is subextensive but
nonzero.] In this Letter, we outline the general ideas and
main results, leaving technical details and further elabora-
tion to Ref. [18].
Setup.—Consider a system A in a mixed state ρA, which

is in macroscopic equilibrium. To explore the bipartite
entanglement structure of A, we would like to evaluate the
logarithmic negativity EðA1; A2Þ and mutual information
IðA1; A2Þ between a subsystem A1 and its complement A2

in A. The logarithmic negativity E is nonzero only if ρA is
not separable and can be used to lower bound the

entanglement cost: EðA1; A2Þ ≤ EðPPT;exactÞ
c ðA1; A2Þ [19].

The mutual information I also contains classical informa-
tion but is, nevertheless, of importance, as it upper bounds
the distillable entanglement: EdðA1; A2Þ ≤ 1

2
IðA1; A2Þ [20].

(See Supplemental Material [21] for various technical
definitions, which includes references to Refs. [22–25].)
We can imagine that A is embedded in a larger system

S ¼ A ∪ B, with the total system S in a pure state jΨi and
ρA ¼ TrBjΨihΨj. In many situations of interest, such a B
naturally exists. For example, for an evaporating black
hole, when A is the Hawking radiation, B is the remaining
black hole.
In Ref. [10], it was shown that the quantum-informa-

tional properties for a system in such an equilibrated pure
state jΨi can be calculated from properties of an equilib-
rium density matrix

ρðeqÞ ≔
1

Z1

Iα; Z1 ≔ TrIα; ð3Þ

which has the same macroscopic thermodynamic behavior
as jΨi. Here, α denotes macroscopic equilibrium para-
meters such as temperature or chemical potential.
Specification of Iα can be viewed as specifying the

FIG. 1. The general behavior of logarithmic negativity and
mutual information is shown for finite-temperature equilibrated
pure states, specifically evaporating black holes. While the
mutual information within the radiation does not become ex-
tensive until the Page time tp, the negativity becomes large at the
earlier time tb. After the Page time, we expect the entanglement to
be distillable.
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universality class of an equilibrated pure state. We assume
below that Z1 ≫ 1, which corresponds to having a large
effective Hilbert space dimension.
From Ref. [10], the Rényi partition function for a

subsystem R can be obtained by

Zn;R ≔ TrρnR ≈
1

Zn
1

X
τ∈Sn

hηR ⊗ eR̄jIα; τi; ð4Þ

where τ is an element of the permutation group Sn and R̄ is
the complement of R in S. When Eq. (4) can be expressed
as an analytic function of n, the von Neumann entropy for
R can be obtained by analytic continuation of Eq. (4).
Alternatively, we can use Eq. (4) to calculate the resolvent

RðλÞ ≔ Tr

�
1

λ1 − ρR

�
¼ 1

λ

X∞
n¼0

1

λn
Zn;R; ð5Þ

which can be used to find the spectral density of ρR,

DðλÞ ¼ 1

π
lim
ϵ→0

ImRðλ − iϵÞ; λ ∈ R; ð6Þ

and, hence, the von Neumann entropy

SðRÞ ¼ −
Z

dλDðλÞλ log λ: ð7Þ

Equations (4)–(7) can be used to calculate the mutual
information IðA1; A2Þ by taking R to be the different
subsystems.
We generalize the methods of Ref. [10] to calculate the

partial transpose partition function

ZðPTÞ
n ≔ TrAðρT2

A Þn

≈
1

Zn
1

X
τ

hηA1
⊗ η−1A2

⊗ eBjIα; τi; ð8Þ

where T2 denotes partial transpose of ρA with respect to A2.
When Eq. (8) is analytic in even n, the logarithmic
negativity can be found from analytic continuation as

EðA1; A2Þ ¼ limn→1=2 logZ
ðPTÞ
2n . Alternatively, it can be

calculated from the resolvent for ρT2

A as

RNðλÞ ≔ Tr

�
1

λ1 − ρT2

A

�
¼ 1

λ

X∞
n¼0

1

λn
ZðPTÞ

n ; ð9Þ

DNðλÞ ¼
1

π
lim
ϵ→0

ImRNðλ − iϵÞ; λ ∈ R; ð10Þ

EðA1; A2Þ ¼ log

�Z
dλDNðλÞjλj

�
; ð11Þ

where DNðλÞ is the spectral density of ρT2

A .

Wewill consider EðA1; A2Þ and IðA1; A2Þ at leading order
in the thermodynamic limit. In this limit, Eqs. (4) and (8) can
both be approximated by terms from a subset of permuta-
tions τ, which give the dominant contribution. These sets of
permutations can change as we vary two parameters

λ ≔
SðeqÞA1

SðeqÞA

; c ≔
SðeqÞA

SðeqÞA þ SðeqÞB

; ð12Þ

where SðeqÞA1;A;B
are, respectively, the von Neumann entropies

for A1, A, and B in the state ρðeqÞ. These parameters can be
seen as a way of measuring the relative sizes of the sub-
systems in the general case where the system S ¼ A ∪ B is
inhomogeneous. The change in the dominant contribution
on varying c and λ leads to qualitative changes in the

behavior of ZðPTÞ
n and Zn;R and, correspondingly, of

EðA1; A2Þ and IðA1; A2Þ. We refer to such changes as
entanglement phase transitions. In the black hole setting,
c is a monotonic function of evaporation time t with
cðt ¼ 0Þ ¼ 0, c ¼ 1

2
corresponding to the Page time and c ¼

1 corresponding to the time at which the black hole has
entirely evaporated. While the specific function cðtÞ is
system dependent, c can be used as a system-independent
proxy of the evaporation time. Furthermore, λ represents the
fraction of the radiation in subsystem A1.
To justify using the equilibrium approximation for a given

quantity Q, we can estimate the size of the fluctuations
around the equilibrium value using Δ2

Q ≡ ðQ2Þeq approx−
ðQeq approxÞ2. As a self-consistent check of whether the
approximation is valid, ΔQ should be small relative to
Qeq approx. We checked that this criterion is met for the
Rényi partition functions in Ref. [10] and for the partial
transpose partition function in Appendix B in Ref. [18],
when the effective Hilbert space dimension of the system
is large. For a recent study of the logarithmic negativity
in thermalized chaotic quantum-many body systems,
see Ref. [26].
Infinite-temperature phase diagram.—For an equili-

brated pure state at infinite temperature, Iα is given by

FIG. 2. Entanglement phase diagram for the infinite-temper-
ature equilibrated pure state.
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the identity operator 1AB. The logarithmic negativity and
mutual information have the same phase structure (Fig. 2),
coinciding with that obtained from the Haar random states
[11] and summarized as follows. (1) Phase of no entangle-
ment (NE) [“no entanglement” here should be understood
as no “volume-law” entanglement; i.e., there is no con-
tribution at the order of Oðlog dAÞ]: For c < 1

2
, we find

EðA1; A2Þ ¼ IðA1; A2Þ ¼ 0; ð13Þ

implying that ρA is close to maximally mixed, and all
degrees of freedom of A are maximally entangled with
those in B. (2)Maximally entangled phase (ME): For c > 1

2
,

λ > ð1=2cÞ, we find

EðA1; A2Þ ¼
1

2
IðA1; A2Þ ¼ SðeqÞA2

; ð14Þ

which implies that A2 is maximally entangled with A1. In
this regime, the effective number of degrees of freedom in
A2 and B together is smaller than that in A1. Thus, both
A2 and B should be maximally entangled with A1.
(3) Entanglement saturation phase (ES): For c > 1

2
,

1 − ð1=2cÞ < λ < ð1=2cÞ, we have

EðA1; A2Þ ¼
1

2
IðA1; A2Þ ¼

1

2
ðSðeqÞA − SðeqÞB Þ: ð15Þ

Both the negativity and mutual information depend only on

the difference SðeqÞA − SðeqÞB and do not change as we vary the
size of A1 (as long as we stay in the aforementioned
parameter range). There is a simple intuitive interpretation
of Eq. (15) in terms of bipartite entanglement among pairs

of subsystems: Since SðeqÞB < SðeqÞA , log dB ¼ SðeqÞB degrees
of freedom in A are entangled with B, and the remaining

log dA − log dB ¼ SðeqÞA − SðeqÞB are entangled between A1

and A2. We should emphasize, however, that this “mechani-
cal” way of assigning entanglement likely does not reflect
the genuine entanglement structure of the system in this
phase, and there are indications of significant multipartite
entanglement [18].
The equilibrium approximation.—The infinite-

temperature case applies only to a system with a finite-
dimensional Hilbert space at sufficiently high energies or
without energy conservation. Otherwise, energy constraints
must be imposed. Now there are many more possibilities
for Iα, which depend on the ensemble chosen.
At finite temperature, each ZðPTÞ

n , Zn;R gives rise to a
different phase diagram, revealing intricate patterns of
entanglement structure. A significant technical complica-
tion at finite temperature is that the extraction of the
logarithmic negativity and the von Neumann entropies
using analytic continuation becomes a priori unreliable
near phase boundaries, due to the nonuniform dependence
on n. E and I must be calculated using the resolvents, which

fortunately may be done for some choices of Iα.
(See Supplemental Material [21] for explicit calculations.)
Consider first the mutual information. At finite temper-

ature, to leading order in volume, the equilibrium approxi-
mation for Zn;R leads to the following approximation for
the von Neumann entropy:

SR ¼ min ðSðeqÞR ; SðeqÞR̄ Þ: ð16Þ

In Ref. [10], this generalization of Page’s formula was
argued on the basis of analytic continuation. However, this
statement remains true in all cases of Iα that we have
studied using the resolvent, including inhomogeneous
cases. Given that the von Neumann entropy of a thermal

density operator is extensive (SðeqÞA1
þ SðeqÞA2

¼ SðeqÞA ), we then
find that IðA1; A2Þ has exactly the same behavior as at
infinite temperature (13)–(15) and the same phase diagram.
The logarithmic negativity has a much richer structure.

The precise phase diagram for E depends on the choice of
Iα, but, in all cases we have studied, there are analogs of
the NE, ES, and ME phases, coming from different
dominant permutations in Eq. (8). A most surprising
feature, which appears to be generic in the examples where
the resolvents can be explicitly calculated, is that there is a
regime for an Oð1Þ range of the parameter c where E is
extensive while I is subextensive. It is generally believed
that, since the mutual information contains both quantum
and classical correlations, there cannot be any volumelike
quantum entanglement when it is subextensive. Our results
indicate that this intuition cannot be correct. Another
surprising feature is that there are new phases in E which

cannot be found by analytic continuation of ZðPTÞ
n . In all

cases below, SðeqÞn;R refers to the nth Rényi entropy of ρðeqÞR .
Consider first the canonical ensemble

Iα ¼ e−βAHA ⊗ e−βBHB ; ð17Þ

where A and B may have different inverse temperatures βA
and βB. Using Eq. (8), the negativity can be deduced from

the phases of ZðPTÞ
n by analytic continuation:

ENE ¼ 0; ð18Þ

EME ¼ SðeqÞ1=2;A1
ðβAÞ or EME ¼ SðeqÞ1=2;A2

ðβAÞ; ð19Þ

EES ¼
1

2
½SðeqÞ1=2;AðβAÞ − SðeqÞ2;B ðβBÞ�; ð20Þ

generalizing Eqs. (13)–(15). Comparison of EES and ENE
suggests that the transition between the NE and ES phases
is given by the condition

SðeqÞ1=2;A ¼ SðeqÞ2;B : ð21Þ
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Because Sn monotonically decreases with n, we have

SðeqÞ1=2;A > SðeqÞA and SðeqÞ2;B < SðeqÞB , so the transition must

happen for SðeqÞA < SðeqÞB , i.e., at some c0 < 1
2
, so that there

is a region in the phase diagram where the logarithmic
negativity is extensive but the mutual information is
subextensive. In the case where A is at infinite temperature
while B is at finite temperature, we found the exact
resolvent in the NE and ES phases and confirmed
Eqs. (20) and (21). A special example is the toy model
of black hole evaporation in Jackiw-Teitelboim (JT) gravity
discussed in Ref. [16], where

SðeqÞ2;B ¼ S0 þ s2ðβÞ; SðeqÞB ¼ S0 þ s1ðβÞ;
s1ðβÞ > s2ðβÞ ∼Oð1Þ; ð22Þ

for which we have c0 ¼ 1
2
f1 − ½ðs1 − s2Þ=2S0�g. In this

model, due to the special structure of the density of states
for JT gravity, the difference between c0 and c turns out to
be subleading in S0 unless one takes β to scale with S0; for
higher-dimensional gravity systems, this difference is
always Oð1Þ. The negativity phase diagram for this model
is also discussed in Refs. [27,28].
Suppose A equilibrates to the microcanonical ensemble

at fixed energy density, while B equilibrates to infinite
temperature

Iα ¼
X

E
A1
a1
þE

A2
a2
∈IE;Δ

ja1iha1j ⊗ ja2iha2j ⊗ 1B; ð23Þ

where EAs
as refer to energies in As and IE;Δ is a narrow

energy interval ½E − Δ; Eþ Δ�. From Eq. (8) and analytic
continuation in n, we find

ENE ¼ 0; ð24Þ
EME ¼ SðeqÞ1=2;A1

or EME ¼ SðeqÞ1=2;A2
; ð25Þ

EES ¼
1

2
ðSðeqÞ1=2;A1

þ SðeqÞ1=2;A2
− log dBÞ; ð26Þ

which we confirm using a resolvent calculation. The value
c0 < 1

2
for the transition between the ES and NE phases is

again determined by the condition EES ¼ 0.
Next, consider an example where the system A2 is taken

to be at infinite temperature, while A1B equilibrates to the
microcanonical ensemble as fixed energy density

Iα ¼ 1A2
⊗

X
E
A1
p þEB

r ∈IE;Δ

ðjpihpjÞA1
⊗ ðjrihrjÞB: ð27Þ

We then find that

ENE ¼ 0; ð28Þ

EME ¼ SðeqÞ1=2;A1
or EME ¼ log dA2

; ð29Þ

EES ¼
1

2
log dA2

þ SðeqÞ1=3;A1
−
1

2
SðeqÞA1

−
1

2
SðeqÞB : ð30Þ

The corresponding c0 is < 1
2
. since SðeqÞ1=3;A1

> SðeqÞA1
. In this

case, it is possible to use the resolvent to find the phase
diagram for all regimes of c and λ, as shown in Fig. 3. In
addition to finite-temperature generalizations of the NE,
ES, and ME phases, there are also two new phases
(ES-ME1 and ES-ME2) that cannot be obtained by analytic

continuation of ZðPTÞ
n . While there is a discontinuity in first

derivative ð∂E=∂cÞ in going from the NE phase to the ES or
ES-ME2 phases, for the remaining phase transitions, there
is a discontinuity only in the second derivative ð∂2E=∂c2Þ.
One feature of the phase diagram is that the logarithmic
negativity and the mutual information appear to reflect
different physics; in general, at the phase boundaries of the
mutual information, there is no qualitative change in the
logarithmic negativity and vice versa.
Let us now discuss the operational implications of the

above results. Because the distillable entanglement is upper
bounded by half of the mutual information [20] while the

FIG. 3. Left: the phases of the logarithmic negativity for Eq. (27) shown with different colored regions. The phase transition lines for
the mutual information are shown with dashed black lines. The magenta line between NE and ES agrees with setting EES in Eq. (30) to
zero. Note that the precise shape of the phase transition lines for E depends on the average energy density ϵ and the form of the entropy
density sðϵÞ for the system; here, we took sðϵÞ ¼ ffiffiffi

ϵ
p

and ϵ ¼ 0.5. Right: E and I along a vertical line at λ ¼ 0.3 in the phase diagram,
and the inset shows ð∂E=∂cÞ along the same line, with the phase transitions indicated by vertical grid lines.
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exact PPT entanglement cost is lower bounded by the
logarithmic negativity [19], we can draw the operational
conclusion that the exact entanglement cost is much greater
than the distillable entanglement:

EðexactÞ
c ≫ EðexactÞ

d : ð31Þ

That is, the system has significant bound entanglement.
Implications for evaporating black holes.—For evapo-

rating black holes, A is the radiation and B is the black hole.
In Ref. [13], Page found that the entanglement entropy of
the radiation (treated as a random state) undergoes a
transition from increasing to decreasing behavior at some
timescale t ¼ tp, where log dA ¼ logdB, and is also the
time at which entanglement within the radiation starts to
become extensive.
The natural finite-temperature generalization of the Page

time is when SðeqÞA ¼ SðeqÞB (c ¼ 1
2
), which we confirmed

from the equilibrium approximation. However, our results
for logarithmic negativity give the surprising prediction that
there are significant entanglement correlations within the
radiation long before the Page time. This statement is
universal at finite temperature and does not depend on the
specific ensemble or model chosen. (For example, in the
model of black hole evaporation in Ref. [16], the correct
ensemble is system B in the canonical ensemble at inverse
temperature β with A1 and A2 at infinite temperature. In
contrast, for black hole evaporation processes that conserve
the total energy, it may be more suitable to choose the
microcanonical ensemble for the joint A1 ∪ A2 ∪ B sys-
tem.) This suggests the existence of another timescale tb
when quantum entanglement within the radiation starts
becoming extensive. For the canonical ensemble, this is the
timescale defined by Eq. (21), while in the microcanonical
ensemble, depending on the choice of subsystems with
energy conservation, it is given by the time at which
Eq. (26) or (30) becomes positive. tb may then be explicitly
written in terms of the black hole and radiation parameters
by evaluating the corresponding thermal Rényi entropies
using the density of states for the system. For timescales
t ∈ ðtb; tpÞ, the entanglement correlations within the radi-
ation appear to be bound entanglement. An important
outstanding issue in quantum-information theory is
whether there exist bound-entangled states with negative
partial transpose [29]. Our results suggest a promising
avenue to address this problem, though it remains to be
seen whether there is a subextensive amount of distillable
entanglement in these thermalized states.
It is also instructive to consider the Hayden-Preskill

thought experiment at finite temperature. Suppose we
throw a diary into the black hole and see when the
information of the diary is recoverable from the radiation.
Applying the equilibrium approximation to the Petz recov-
ery map, it can be shown that the information of the diary
can be recovered from the radiation with Oð1Þ fidelity only
after tp [18]. This can be viewed as giving an operational

definition of the Page time. Surprisingly, for diaries with
large entropy, the fidelity of recovery first begins to
appreciably grow from its minimal value at tb [18],
suggesting an operational definition of this new timescale.
Because the correlations within the radiation grow starting
at tb, we expect that this timescale may also be important
for other observables.
In Euclidean gravity setups, the calculation of the

negativity between parts of the radiation in the ES and
ME phases involves replica wormholes which is shown
explicitly in Supplemental Material [21]. It would be
interesting to understand whether it is possible to obtain
a Lorentzian derivation of the nonzero negativity before the
Page time and see whether there is any semiclassical or
geometric description of bound entanglement. It would also
be interesting to understand the new phases which do not
correspond to simple analytic continuations in a gravity
calculation.
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