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We propose an explicitly calculable example of holography on three-dimensional de Sitter space by
providing a prescription to analytic continue a higher-spin holography on three-dimensional anti–de Sitter
space. Applying the de Sitter holography, we explicitly compute bulk correlation functions on three-
dimensional de Sitter space at late time in a higher-spin gravity. These expressions are consistent with
recent analysis based on bulk Feynman diagrams. Our explicit computations reveal how holographic
computations could provide fruitful information.
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Introduction.—Quantum gravity on de Sitter (dS) back-
ground is important to understand our early Universe. In
particular, the late time correlation functions on dS have
been argued to give a clue to understand what happened at
inflation era [1–4]. It is expected that dS=CFT correspon-
dence [1,5,6] is useful to formulate quantum gravity on dS
as the better explored AdS=CFT correspondence [7] does
for quantum gravity on anti–de Sitter (AdS) space. Until
recently, however, there has been only one concrete explicit
prototype of dS=CFT correspondence, which uses higher-
spin gravity on four-dimensional dS [8]. The duality can
be understood as an analytic continuation of higher-spin
AdS4 holography by [9], see [10–13] for previous works.
Recently, another explicit proposal was made on three-
dimensional de Sitter holography [14,15], see [16] for a
previous attempt. The purpose of this Letter is to compute
bulk correlation functions on three-dimensional dS at late
time by elaborating the proposal furthermore. To our best
knowledge, this is the first computation of bulk dS corre-
lators at late time based on an explicit concrete holographic
setup. We compare our results with the recent analysis based
on direct bulk Feynman diagram computations [17,18].
See also [19,20] as well. Since lower dimensional examples
are much more tractable, we expect to learn a lot about
mysterious dS=CFT correspondence through them.
For our purpose, we develop a holographic method for

bulk computations and higher-spin dS3 holography. We
first identify the phases relating the dS boundary operators

with their AdS counterparts due to the analytic continuation
from AdS. We then elaborate the dS3=CFT2 correspon-
dence in [14,15]. In order to analyze bulk correlators, we
consider an analytic continuation of Gaberdiel-Gopakumar
duality [21], which is between 3D Prokushkin-Vasiliev
theory [22] and 2D coset model

SUðNÞk × SUðNÞ1
SUðNÞkþ1

: ð1Þ

This coset was proven to describeWN-minimal model [23].
We provide a prescription to perform an analytic continu-
ation, which is different from the previous one [24]. We then
apply the Maldacena’s holographic prescription to compute
bulk dS correlators at late time given in [1] and find explicit
expressions for two- and three-point correlators. We also
examine a simple four-point correlator. We finally compare
our results to generic arguments on bulk Feynman diagrams
in [17,18] and comment on the advantage of holographic
approach.
Preliminary.—We start by reviewing the AdS=CFT

correspondence in order to explain how dS=CFT corre-
spondence is obtained from an analytic continuation. We
consider a gravity theory on dþ 1-dimensional AdS and
d-dimensional conformal field theory (CFT) on the AdS
boundary. In the bulk theory, we assume there exist
symmetric tensor fields σAdSi1���is with mass m and spin s,
and the scalar fields correspond to the ones with s ¼ 0. The
CFT operators dual to the bulk fields are denoted by Ji1���isAdS .
For the Euclidean AdS metric, we use the Poincaré
coordinates,

ds2 ¼ l2
AdS

dy2 þ dx⃗2

y2
; ð2Þ
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with the AdS radius lAdS. We consider the region with
y ≥ 0 and the boundary is located at y ¼ 0. The bulk field
behaves near y ¼ 0 as

σAdSi1���isðy; x⃗Þ ∼ σþ;AdS
i1���is ðx⃗ÞyΔþ−s þ σ−;AdSi1���is ðx⃗ÞyΔ−−s; ð3Þ

with

l2
AdSm

2 ¼ −ðΔþΔ− þ sÞ; Δ− ¼ d − Δþ: ð4Þ
We use the flat boundary metric as ds2 ¼ dx⃗2, and the
coupling between the bulk field and its dual operator is

ld
AdS

Z
ddx⃗ σ�;AdS

i1���is Ji1���is�;AdS; ð5Þ

where the lAdS-dependent factor is explicitly written.
We then consider dS=CFT correspondence. The

Poincaré patch for Lorentzian dSdþ1 is described by

ds2 ¼ l2
−dη2 þ dx⃗2

η2
; ð6Þ

with dS radius l. We consider the region η ≤ 0 and a
boundary is located at the future infinity η → −0. The
metric can be related to (2) by

y ¼ −iη; lAdS ¼ −il: ð7Þ
As in the case of AdSdþ1, we consider bulk tensor fields on
dSdþ1 denoted by σi1���is, which are dual to boundary
operators Ji1���is . In particular, the conformal dimension
of the dual operator is

l2m2 ¼ ΔþΔ− þ s; Δ− ¼ d − Δþ: ð8Þ
In this Letter, we consider the case with small l2m2 in order
to avoid subtlety associated with complex Δ�. Near
η → −0, the bulk field behaves as

σi1���isðη; x⃗Þ ∼ σþi1���isðx⃗Þð−ηÞΔþ−s þ σ−i1���isðx⃗Þð−ηÞΔ−−s: ð9Þ

Following [1], we may identify σAdSi1���is with σi1���is by
generalizing the map (7) as follows. Notice that bulk indices
are lowered and raised by the bulk metric gμν ∼ l2 but the
boundary metric is independent of l, see, e.g., [8]. It is thus
natural to assign

l−sσ�i1���isðx⃗Þ ¼ iΔ�−sl−s
AdSσ

�;AdS
i1���is ðx⃗Þ; ð10Þ

and we have

σ�i1���isðx⃗Þ ¼ eiðπ=2ÞΔ�σ�;AdS
i1���is ðx⃗Þ;

J�i1���isðx⃗Þ ¼ eiðπ=2Þðd−Δ�ÞJ�;AdS
i1���is ðx⃗Þ: ð11Þ

For conserved currents with Δþ ¼ sþ d − 2, symmetric
traceless tensors are

Jþi1���isðx⃗Þ ¼ eiðπ=2Þð2−sÞJþ;AdS
i1���is ðx⃗Þ: ð12Þ

In particular, the energy momentum tensor with s ¼ 2 does
not receive any phase factor and the standard operator
product expansions are preserved.
As mentioned above, we would like to compute bulk

correlators on dS at late time by following the prescription
of [1], which may be summarized as

Ψ½σ�i1���is � ¼
�
exp

�
ld

Z
ddx⃗ σ�i1���isJ

i1���is
�

��
: ð13Þ

The left hand side is the wave functional of universe for a
fixed d-dimensional metric gμν ¼ hμν at late time η → −0.
The right hand side is computed by a certain CFT with
operators Ji1���is� coupled with their dual bulk fields σ�i1…is

.
The bulk correlation functions are then computed as
expectation values as*Ym

j¼1

ψ jðx⃗jÞ
+

¼
Z

½Dψ i�jΨ½ψ l�j2
Ym
j¼1

ψ jðx⃗jÞ; ð14Þ

where we set ψ j ¼ σ�i1���isj . See, e.g., Appendix A of [4] for

more details.
Higher-spin AdS3 holography.—In this Letter, we con-

struct an explicit example of dS3=CFT2 correspondence by
suitable analytic continuation of Gaberdiel-Gopakumar
duality [21] as in [14,15]. The gravity side of this duality
is given by the Prokushkin-Vasiliev theory [22] on AdS3,
which consists of higher-spin gauge fields and two com-
plex scalar fields. The higher-spin sector can be described
by Chern-Simons gauge fields A ¼ Aμdxμ, Ā ¼ Āμdxμ.
The gauge fields take values in higher-spin algebra hs½λ̂�.
The algebra can be defined such as to be truncated to slðN0Þ
at λ̂ ¼ N0 with positive integer N0 even though we use
0 < λ̂ < 1. The Chern-Simons action is given by [25]

S ¼ SCS½A� − SCS½Ā�;

SCS ¼ kCS
4π

Z
Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
: ð15Þ

Here, kCS is the level of the Chern-Simons theory, and it
relates to gravity parameters as kCS ¼ lAdS=ð4GNÞ, where
GN is the Newton constant. The asymptotic symmetry
near the AdS boundary is found to be aW algebra [28,29].
The central charge is the same as the Brown-Henneaux
one [30] as

c ¼ 6kCS ¼
3lAdS

2GN
: ð16Þ

Note that the classical gravity limit with GN → 0 corre-
sponds to the large central charge limit c → ∞. More
precisely speaking, the symmetry algebra isW∞½λ̂�, which
can be truncated toWN0 algebra with spin-sð¼ 2; 3;…; N0Þ
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currents at λ̂ ¼ N0 [31]. The two complex scalar fields ϕ�
have masses given by l2

AdSm
2 ¼ λ̂2 − 1.

The CFT dual to the higher-spin theory on AdS3 was
proposed to be the WN-minimal model at the ’t Hooft limit
[21]. The WN-minimal model can be described by a coset
CFT (1) with the central charge

c ¼ ðN − 1Þ
�
1 −

NðN þ 1Þ
ðN þ kÞðN þ kþ 1Þ

�
: ð17Þ

The classical limit of higher-spin gravity is proposed to be
dual to the ’t Hooft limit, where N; k → ∞ but ’t Hooft
parameter λ¼N=ðNþkÞ is kept finite. Note that 0 < λ < 1

for real positive integer N, k. The proposal of [21] is that λ
is identified with λ̂ appearing in the higher-spin theory. In
the following, we only use λ to express the parameter.
The dual operators are given by two complex scalar

operators OAdS
� ðz; z̄Þ½≡OAdS

� ðzÞ� and holomorphic con-
served spin-s currents JAdSðsÞ ðzÞ with Δþ ¼ s ¼ 2; 3;…

[and antiholomorphic currents J̄AdSðsÞ ðz̄Þ]. The conformal

dimensions of OAdS
� ðzÞ are 2h� ¼ 1� λ at the ’t Hooft

limit. The three-point functions of scalar-scalar-higher-spin
current are computed from the bulk Vasiliev equations
in [32] as

hOAdS
� ðz1ÞŌAdS

� ðz2ÞJAdSðsÞ ðz3Þi

¼ CðsÞ
�

�
z12

z13z23

�
s
hOAdS

� ðz1ÞŌAdS
� ðz2Þi ð18Þ

with

CðsÞ
� ¼ ηs�

2π

ΓðsÞ2
Γð2s − 1Þ

Γðs� λÞ
Γð1� λÞ ð19Þ

at the leading order in 1=c. The phase factors can be
chosen arbitrarily but here we set ηsþ ¼ 1 and ηs− ¼ ð−1Þs
as in [33]. The holomorphic higher-spin currents are
normalized as

hJAdSðsÞ ðzÞJAdSðsÞ ð0Þi ¼ cBðsÞ

z2s
;

BðsÞ ¼ 1

22sπ
5
2

sinðπλÞ
λð1 − λ2Þ

ΓðsÞΓðs − λÞΓðsþ λÞ
Γðs − 1

2
Þ :

ð20Þ
Since the higher-spin theory has one dimension-less
parameter kCSð¼ c=6Þ, the coupling to scalar fields is also
organized by the same parameter. Thus, the canonical
normalization of two-point functions of scalar operators is

hOAdS
� ðz1ÞŌAdS

� ðz2Þi ∼
c

jz12j4h�
ð21Þ

up to an overall real factor as shown in [8].

Here, we remark that the three-point correlators (18) can
also be obtained from the bulk three-point Witten diagram:Z

d3pK2h�;0ðz1;pÞK2h�;0ðz2;pÞKs;sðz3;pÞ; ð22Þ

see Fig. 1. Here, we represent a bulk point by p ¼ ðy; zÞ
and a bulk-to-boundary spin-s propagator with dual dimen-
sion Δ by KΔ;sðz0;pÞ. While the zi dependence was fixed
kinematically, this integral was evaluated in [34] to produce
the overall dynamical factor, and we can show that it
matches with (19) up to an s-independent factor.
Analytic continuation to dS3=CFT2.—We would like to

map the bulk fields on AdS3 to those on dS3 applying (7).
Because of the map, the level of Chern-Simons theory in
(15) has to be changed as [35]

kCS ¼
lAdS

4GN
¼ −i

l
4GN

¼ −iκ; ð23Þ

with κ ∈ R. The symmetry at late time is supposed to be
W∞½λ� algebra with pure imaginary c ¼ −i6κ [5,16], see
(16). The masses of two complex scalars ϕ� become
l2m2 ¼ 1 − λ2. Here, we again assign 0 < λ < 1 but now
for l2m2 to be positive.
The dual CFT is given by (1) but the central charge (17) is

now pure imaginary. We would like to provide a concrete
prescription to perform an analytic continuation in the coset
model. The symmetry underlying the holography is W∞½λ�
algebra, which was shown to be uniquely determined with
two finite parameters λ, c [31,36]. The symmetry of the coset
is realized by a special choice of λ, c in terms of positive
integer k, N. These facts imply that the correct analytic
continuation is keeping λ fixed but setting c ¼ −icðgÞ with
cðgÞ > 0 [37]. Here, we compute coefficient functions in the
wave functional of universe via the relation (13), i.e., in
terms of coset CFT (1), which can be also described by Toda
CFT, see [38]. We then change the parameters from N, k to
c, λ, which can be easily analytically continued.
The CFT has two complex scalar operators

O�ðz; z̄Þ½≡O�ðzÞ� with conformal dimensions 2h� ¼ 1�
λ at the ’t Hooft limit and conserved higher-spin currents
JðsÞðzÞ [and its antiholomorphic partner J̄ðsÞðz̄Þ] with
s ¼ 2; 3;…. The relation to bulk fields on AdS3 can be
read off from (9). For the scalar operator, we assign

FIG. 1. Witten diagrams for three- and four-point functions. The
exchange diagrams may be expressed as products of three-point
functions via split representation of bulk-to-bulk propagators.
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O� ¼ −e−iπh�OAdS
� ; Õ� ¼ −e−iπh�ŌAdS

� : ð24Þ
While ŌAdS

� is the complex conjugate of OAdS
� , the

equation (24) imply that O� and Õ� are no longer
complex conjugate to each other. For higher-spin current,
we have

JðsÞ ¼ −e−ði=2ÞπsJAdSðsÞ ; J̃ðsÞ ¼ −e−ði=2ÞπsJ̄AdSðsÞ : ð25Þ

We then compute bulk correlators at late time from (14).
The two-point correlators can be computed as

hϕ�ðz1Þϕ̃�ðz2Þi ¼ −
1

2RehO�ðz1ÞÕ�ðz2Þi
: ð26Þ

Note that only the real part appears due to the square of the
wave functional as in (14) and ϕ̃� are complex conjugate of
ϕ�. Here, the functional inverse is defined via (see, e.g.,
[39,40])

kh;h̄
1

π

Z
d2y

ðx − yÞ2h−2ðx̄ − ȳÞ2h̄−2
ðy − zÞ2hðȳ − z̄Þ2h̄ ¼ δð2Þðx − zÞ;

kh;h̄ ¼
Γð2 − 2h̄Þ
Γð2h − 1Þ ¼ ð−1Þ2ðh−h̄Þ Γð2 − 2hÞ

Γð2h̄ − 1Þ : ð27Þ

Noticing (21) and (24), we have

hO�ðz1ÞÕ�ðz2Þi ¼ −ie−2iπh�
1

jz12j4h�
ð28Þ

by changing the overall factors of operators. From the
formula (27), we have

hϕ�ðz1Þϕ̃�ðz2Þi ¼ −ah�
1

π

Γð2 − 2h�Þ
Γð2h� − 1Þ

1

jz12j4−4h�
ð29Þ

with

ah� ¼ 1

2 sinð2πh�Þ
: ð30Þ

The factor ah� arises due to the analytic continuation and
indeed it reproduces the corresponding factor cdS-AdSΔ with
Δ ¼ 2h� given in (2.15) of [18]. Note that the factor
cdS-AdSΔ can be used also for spinning fields with conformal
dimension Δ and spin s.
We then consider the higher-spin gauge field and

describe the deviation from the background values by
μðsÞ with s ¼ 2; 3;…. Using the relation (25), the two-
point coefficient functions are written as

hJðsÞðz1ÞJðsÞðz2Þi¼ ð−1Þsþ1
icðgÞ

c
hJAdSðsÞ ðz1ÞJAdSðsÞ ðz2Þi: ð31Þ

Thus, the bulk correlators of higher spin fields at late time
can be written as

hμðsÞðz1ÞμðsÞðz2Þi

¼ aðsÞ
1

πΓð2s − 1ÞcðgÞBðsÞ
1

ðz12Þ2−2sðz̄12Þ2
: ð32Þ

The factor

aðsÞ ¼ ð−1Þsþ1
i
2

ð33Þ

arises due to the analytic continuation as in the scalar case.
However, the phase factor (33) does not match with cdS-AdSΔ
for a massive spin-s field in [18] as it diverges for higher-
spin gauge fields withΔ ¼ s. This implies that the massless
limit of the higher-spin field is quite subtle. Let us see an
example of massive spin-1 field on Lorentzian dSdþ1

space-time. Its bulk two-point function was computed in
(3.18)–(3.20) of [41], but it diverges in the massless limit
m → 0. In the limit, gauge symmetry appears and analysis
has to be redone from the beginning as in Sec. 4 of [41].
In [18], a factor was inserted such that bulk massive spin-s
propagator on dSdþ1 has correct behavior near short
distance. To obtain (33) by their method, we have to work
directly with massless higher-spin gauge field or take a
massless limit with a special care.
We then examine three-point correlators at late time.

Using (24) and (25), the three-point coefficient functions
are related to (18) as

hO�ðz1ÞÕ�ðz2ÞJðsÞðz3Þi

¼ ie−iðπ=2Þð4h�þsÞCðsÞ
�

�
z12

z13z23

�
s 1

jz12j4h�
ð34Þ

and similarly for hO�Õ�J̃ðsÞi. The sum of (34) and the

conjugate of hO�Õ�J̃ðsÞi becomes

−2 sin ½ð4h� þ sÞðπ=2Þ�CðsÞ
�

�
z12

z13z23

�
s 1

jz12j4h�
: ð35Þ

In order to read off the bulk three-point correlators, we need
to multiply two of (29) and one of (32) and integrate over
the positions. We then obtain

hϕ�ðz1Þϕ̃�ðz2ÞμðsÞðz3Þi

¼ −λh�;h�;s
Γð∓ λÞΓð1 ∓ λÞ

ΓðsÞ2Γð1 − s� λÞΓðs� λÞ

×
CðsÞ
�

cðgÞBðsÞ

�
z12

z13z23

�
1−s

�
z̄12

z̄13z̄23

�
1

jz12j4h∓
ð36Þ

with

λh�;h�;s ¼ 2a2h�aðsÞ sin ½ð4h� þ sÞðπ=2Þ�: ð37Þ
The same factor appears in (3.24) of [18] up to the subtlety
associated to the massless limit mentioned above.
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Four-point correlators.—In the coset model (1), the
four-point functions of scalar operators were computed in
[42] exactly in all orders ofN, k. In this Letter, we analyze a
simple one given by

G−þðzÞ ¼ hOAdS
− ð∞ÞOAdSþ ð1ÞŌAdSþ ðzÞŌAdS

− ð0Þi

¼ j1 − zj−2Δþjzj2=N
����1þ 1 − z

Nz

����2: ð38Þ

Following the analytic continuation procedures explained
above, we should be able to obtain four-point bulk
correlator

hϕ−ð∞Þϕþð1Þϕ̃þðzÞϕ̃−ð0Þi ð39Þ

in dS3 at late time.
The expansion of G−þðzÞ in (38) in terms of global

conformal blocks was given in [33] as

G−þðzÞ ¼ j1 − zj−2ð1þλ−1−λ2
c Þ þ j1 − zj−2ð1þλÞ

×

"X∞
s¼2

ð−1Þs C
ðsÞ
− CðsÞ

þ
cBðsÞ ð1 − zÞs2

× F1ðs; s; 2s; 1 − zÞ þ c:c:

#
ð40Þ

up to the order 1=c2. In particular, the conformal dimension
of Oþ can be expanded as Δþ ¼ 1þ λ − ð1 − λ2Þ=
cþOðc−2Þ. The expansion now can be written as a sum
over holomorphic and antiholomorphic conserved spin-s
exchange with s ¼ 2; 3;…;∞ and the coefficients are given
as products of three-point functions. In terms of the Witten
diagram, the four-point function should be computed from

Z
d3p1d3p2K2h−;0ð∞;p1ÞK2hþ;0ð0;p1Þ

× Gs;sðp1;p2ÞK2hþ;0ðz;p2ÞK2h−;0ð1;p2Þ; ð41Þ

see Fig. 1. Here, GΔ;sðp1;p2Þ represents the bulk-to-bulk
spin-s propagator with dual dimension Δ. In the split
representation, it can be expressed as

GΔ;sðp1;p2Þ ¼
Z

∞

−∞

dν
ν2 þ ðΔ− 1Þ2Ων;sðp1;p2Þ;

Ων;sðp1;p2Þ ¼
ν2

π

Z
d2zK1þiν;sðp1; zÞK1−iν;sðp2; zÞ ð42Þ

up to contact term contributions [34]. Picking up poles in
(42), the four-point function becomes a product of three-
point functions, and the integration over the boundary
coordinates leads to a conformal partial wave

Is;0ðzÞ ¼ zs2F1ðs; s; 2s; zÞ þ
Γð2s − 1ÞΓð2sÞ

ΓðsÞ4
× z1−s2F1ð1 − s; 1 − s; 2 − 2s; zÞz̄2F1ð1; 1; 2; z̄Þ

ð43Þ

up to an unimportant overall constant. See [43] for details. In
terms of conformal partial waves, the four-point function can
be expanded as

G−þðzÞ ¼ j1 − zj−2ð1þλ−1−λ2
c Þ þ j1 − zj−2ð1þλÞ

×

�X∞
s¼2

ð−1Þs C
ðsÞ
− CðsÞ

þ
cBðsÞ Is;0ð1 − zÞ

−
1 − λ2

c
ln z̄þ c:c:

�
: ð44Þ

As in (44), there are three kinds of terms in the
expansions of four-point function (38), each has a natural
interpretation in the AdS and dS bulks. The first term is just
the product of two-point functions, corresponding to dis-
connected Witten diagrams. The second term is the sum of
conformal partial waves, which can be expressed in lower-
point coefficient functions as mentioned above. When we
perform the path integral over ϕ�, ϕ̄�, they will be over-
counted if we include them in the four-point coefficient
function. Thus, it is convenient to remove it beforehand. The
third term corresponds to the contact four-point interaction
in the bulk. Analytically continuing from AdS to dS spaces,
the connected parts of their respective four-point CFT
correlators can be related via:

hO−ð∞ÞOþð1ÞÕþðzÞÕ−ð0Þic
¼ −ihOAdS

− ð∞ÞOAdSþ ð1ÞŌAdSþ ðzÞŌAdS
− ð0Þic; ð45Þ

where the subscript “c” indicates the connected part. Notice
that while using (24) yields a phase factor e−iπð2hþþ2h−Þ ¼ 1,
the overall −i comes from the fact that the connected part is
proportional to c if we use the normalization (21) [44]. The
contribution from the third term vanishes in this case after
taking its real part.
Thus, the only nontrivial contribution comes from that

corresponding to the dS bulk exchange diagrams, which
can be written as

hϕ−ð∞Þϕþð1Þϕ̃þðzÞϕ̃−ð0Þic
¼
X∞
s¼2

λhþ;hþ;sλh−;h−;s

aðsÞcðgÞ

×
Γð−λÞΓð1−λÞΓðλÞΓð1þ λÞ

Γð1− sþλÞΓðsþλÞΓð1− s−λÞΓðs−λÞ

×
1

j1− zj2ð1−λÞ
�
ð−1ÞsC

ðsÞ
− CðsÞ

þ
BðsÞ Is;0ð1− zÞþ c:c:

�
: ð46Þ
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The factor λh�;h�;s comes from that in (36) and the division
by aðsÞ eliminates the overcounting of (32). The result is
consistent with the generic expression, say, in (4.39) of [18].
Discussion.—In this Letter, we computed bulk dS3

correlators at late time by developing holographic method
and dS3=CFT2 correspondence. The expressions are con-
sistent with the previous analysis of [17,18] based on bulk
Feynman diagrams in the in-in formulation, whose review
may be found in [45]. Let us end by briefly commenting
these two complementary approaches exploring the dS=CFT
holography and where our results fit in here.
Notice that, in the in-in formulation, there are two types

of interaction vertices with time-ordering and antitime
ordering and the corresponding propagators connecting
them in the dS bulk. This is related to consider both signs
for analytic continuation instead of our prescription (7), see
[17,18]. Moreover, as in the case of AdS computations,
bulk four-point dS correlators can reduce to the evaluation
of the product of two three-point functions by applying a
formula analogous to (42), see, e.g., [17,18]. However, in
such computations, further integrals over spectral param-
eter ν are needed to make full comparisons with CFT
correlators, which are usually very difficult.
In holographic method, wave functional and its com-

plex conjugation are involved as in (14) and the integra-
tion over boundary fields provides connections between
them. We can see how the two methods complement each
other from our explicit calculations. As an advantage of
holographic method, there are no integrals over spectral
parameter ν in (14), and the difficulty is avoided by
directly evaluating the coefficient functions via dual CFT.
In our explicit example, the nontrivial information is
included in the third term of (44). The contribution
vanishes at the end of computation, but the corresponding
term survives for different four-point correlators obtained
from hOAdS

� ŌAdS
� OAdS

� ŌAdS
� i. See [33,42] for their exact

forms and conformal block expansions. In addition,
coefficient functions can be obtained even with finite λ,
c from the explicit dual CFT. For these reasons, holo-
graphic method would enable us to evaluate more com-
plicated bulk correlators at loop levels, on dS3
cosmological backgrounds [46], and so on. We are planing
to report on more details on the relation between two
methods and further analysis of bulk correlators in the
near future.
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