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We show that gravitational waves cause freely falling gyroscopes to precess relative to fixed distant stars,
extending the stationary Lense-Thirring effect. The precession rate decays as the square of the inverse
distance to the source and is proportional to a suitable Noether current for dual asymptotic symmetries at
null infinity. Integrating the rate over time yields a net rotation—a “gyroscopic memory”—whose angle
reproduces the known spin memory effect but also contains an extra contribution due to the generator of
gravitational electric-magnetic duality. The angle’s order of magnitude for the first Laser Interferometer
Gravitational Wave Observatory signal is estimated to be Φ ∼ 10−35 arc sec near Earth, but the effect may
be substantially larger for supermassive black hole mergers.
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Introduction.—Consider an observer floating freely in
outer space, carrying a spinning gyroscope. The observer
looks at fixed distant stars in order to measure the
gyroscope’s orientation. When a localized source emits a
burst of gravitational waves that crosses the observer’s
path, the gyroscope precesses and eventually settles in a
new orientation (Fig. 1); the corresponding rotation angle
carries a “memory” of the wave profile. The goal of this
Letter is to describe this precession and the ensuing
memory effect.
Themotivation for this investigation is twofold. The first is

the recent breakthrough observation of gravitational waves
[1], which makes it realistic to seek their measurable
signatures. In particular, “memory effects” [2–12] sensitive
to the net offset of metric components after a gravitational
wave burst (see Fig. 2) may be observable in the near future
[13–15]. The second motivation has to do with fundamental
symmetries of classical and quantum gravity. Indeed,
asymptotically Minkowskian space-time metrics enjoy an
infinite-dimensional “Bondi-Metzner-Sachs symmetry”
[16–19], whoseNoether currents at null infinitywere recently
related to the displacement memory that affects nearby freely
falling test masses [20]. In a similar vein, the rate of
gyroscopic precession found here turns out to coincide with
a current [21,22] for so-called dual supertranslations [23–30].
Furthermore, thenet changeof orientationbefore and after the
passage ofwaves involves a superrotation charge [31–33] and
a generator of local gravitational electric-magnetic duality
transformations. Toour knowledge, this is the first appearance
of such dual symmetries in a simple local measurement
protocol for gravitational waves.

There is, in fact, a third, perhaps more academic,
motivation for this Letter. Indeed, while our results are
related to deep properties of the gravitational phase space at
the forefront of research, our method is comparatively
elementary: it consists of rewriting the parallel transport
equation of a spin vector in a radiative space-time, with
respect to a tetrad whose elements point toward fixed
distant stars. The computation is thus an exercise that
generalizes Lense-Thirring precession ([34] Sec. 40.7) to
radiative metrics, and it could have been carried out 60 years
ago [16,17]. It seems important indeed to fill such a gap in
the literature.

FIG. 1. The world line of a freely falling observer with a
gyroscope, represented here (in red) in a Penrose diagram of near-
Minkowski space. The gyroscope’s spin is parallel transported
along its trajectory, but the passage of gravitational waves causes
its orientation to change relative to fixed distant stars. Bondi
coordinates ðu; r; θaÞ are included; the source of radiation is
located at the origin r ¼ 0.
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The Letter is organized as follows. The second section
sets the stage by displaying the (Bondi) coordinates and
metric [16,17] to be used throughout and contains a
description of the tetrad with respect to which precession
is to be evaluated. The third section is then devoted to our
results, namely, the expression of the precession rate in
terms of a “dual covariant mass aspect” [21,22] and that of
orientation memory in terms of a surface charge, its flux,
and a generator of electric-magnetic duality. Aside from the
latter, this actually reproduces the spin memory effect [11]
as a special case. Note that computational details are
omitted throughout: they are relegated to the longer
companion paper [35].
Metric and tetrad.—This section introduces Bondi coor-

dinates, the corresponding asymptotically flat metrics, and
the tetrad that will be used in the next section to measure the
gyroscope’s orientation relative to fixed distant stars.
Readers familiar with the Bondi metric ansatz may jump
straight to the discussion of the tetrad below Eq. (3).
First choose an origin in space and label the points of the

four-dimensional space-time manifold by retarded Bondi
coordinates: an areal distance r, a retarded time u, and
angular coordinates θa (a ¼ 1, 2) on a unit celestial sphere
with metric qabðθÞdθadθb (see Fig. 1). Any outgoing
lightlike ray then propagates so as to eventually reach
future null infinity, i.e., the region r → ∞ with finite u.
Accordingly, we assume throughout that our observer is
located at large r. It is then meaningful to expand the
components of the space-time metric as asymptotic series
in 1=r [36],

ds2∼−
�
1−

2m
r
−
2F
r2

�
du2−2

�
1−

C2

16r2

�
dudr

þ
�
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1

4
qabC2

�
dθadθb

þ2
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2
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�
2
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La−

1

16
∂aðC2Þ

��
dudθa; ð1Þ

where the functions m, F, Cab, and La only depend on
ðu; θÞ. (We also write C2 ≡ CabCab to reduce clutter,
with indices raised and lowered thanks to the metric qab;
Da is the covariant derivative on S2.) The radial dependence
is thus explicit and the metric reduces to the pure
Minkowski form ds2 ¼ −du2 − 2du drþ r2qabdθadθb in
the limit r → ∞.
The most important quantity in (1) is the (symmetric and

traceless) asymptotic shear tensor Cabðu; θÞ, which con-
tains all the information about radiation. Its time depend-
ence is unconstrained and determines the news tensor
Nab ≡ ∂uCab that will play a key role below. The function
mðu; θÞ is the Bondi mass aspect and Laðu; θÞ is the angular
momentum aspect, respectively, measuring densities of
energy and angular momentum at null infinity. Their time
dependence is fixed by the shear and news tensors through
so-called balance equations [36],

_m ¼ 1

4
DaDbNab −

1

8
NabNab; ð2aÞ

_La ¼ Damþ 1

2
DbD½aDcCb�c − J a; ð2bÞ

where _X ≡ ∂uX, while J is a local quadratic flux,

J a ≡ −
1

4
DbðNbcCacÞ −

1

2
DbNbcCac; ð3Þ

which will eventually turn out to affect orientation
memory. The remaining function F in (1) is then given
by F ¼ −ð1=32ÞC2 − ð1=6ÞðDaLaÞ − ð1=8ÞðDCÞ2, where
we let ðDCÞ2 ≡DbCabDcCac for brevity.
The full metric (1) contains numerous subleading cor-

rections in 1=r, all of which we omit since they will play no
role below. Crucially, all subleading terms are determined
by leading metric data up to time-independent “integration
functions” on celestial spheres [19,37]. This is similar to
mass and angular momentum, whose time evolution (2) is
entirely fixed by news so that only the initial conditions
mðu0; θÞ and Laðu0; θÞ are arbitrary.
Now consider a freely falling observer at large r in an

asymptotically flat metric (1). We wish to build an
orthonormal tetrad ff μ̂jμ ¼ 0; 1; 2; 3g such that f 0̂ ¼ u is
the observer’s proper velocity, while f î (i ¼ 1, 2, 3) are
spacelike vectors pointing toward fixed distant stars at
infinity. (Hatted indices label tetrad elements, and they are
raised or lowered using the inertial Minkowski metric.) In
practice, Bondi coordinates heavily rely on a choice of
origin—the location of the source of radiation.
Accordingly, we first build a “source-oriented” tetrad
feμ̂g, then perform angle-dependent rotations so as to pro-
duce the desired frame ff μ̂g, which we call “star-oriented.”

FIG. 2. A cartoon of the typical local metric perturbation
caused by gravitational waves. Even after the end of the
disturbance, some metric components [typically some function
of the shear Cab in Eq. (1)] differ from their initial value by an
amount that depends on the waveform. This net offset has
potentially observable consequences; one of them is the gyro-
scopic memory described here. See the last subsection for a more
detailed discussion of this plot in the gyroscopic context.
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Our starting point is the observer’s proper velocity

e0̂ ¼ f 0̂ ¼ u ¼ γð∂u þ vr∂r þ va∂aÞ; ð4Þ

i.e., the zeroth element of both tetrads. In these terms,
solving the geodesic equation for the metric (1) with the
condition u ∼ ∂u at large r (the observer is asymptotically at
rest) yields

γ ¼ 1þm0
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16
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with m0 ≡mðu0; θÞ as the initial Bondi mass aspect andR
m≡ R

u
u0
du0m. Only spatial tetrad elements thus remain

to be found. In the source-oriented case, one first obtains
the radial vector er̂ by following an outgoing null
radial geodesic, projecting out the u component of its
velocity and finally expanding in 1=r, which yields
er̂ ∼ ð1=γÞ½1þ ð1=r2ÞC2=16�∂r − u. The tetrad is then
completed by picking an orthonormal dyad ζâ on the unit
sphere and expanding angular tetrad elements as

eâ ∼
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This furnishes an explicit source-oriented Lorentz frame
fe0̂; er̂; eâg, written here perturbatively in 1=r.
Obtaining a tetrad whose spatial vectors point toward

fixed distant stars requires an extra step (see Fig. 3), as the

spatial vectors fer̂; eâg need to be rotated in an angle-
dependent manner. This is intuitively obvious: even in pure
Minkowski space, the source-oriented tetrad of a freely
falling observer must rotate continuously so that its vector
er̂ points toward the origin. Any gyroscope with non-zero
angular velocity trivially precesses relative to this tetrad,
even without radiation. One may therefore compensate this
effect by defining transformed tetrad vectors

f î ¼ Rî
ĵðθÞeĵ; ð7Þ

where the local rotation matrix is a path-ordered exponen-
tial RðθÞ ¼ P exp

R
θ
θ0
ω̄ of the spin connection ω̄ of the

flat space triad f∂r − ∂u; ð1=rÞζâg, with ζâ the spherical
dyad introduced above (6). Explicitly, this background
spin connection has components ω̄â r̂ ¼ ζâadθa and
ω̄â b̂ ¼ ζâ

aDbζb̂adθ
b. The observer thus uses flatness at

infinity to adjust their frame by a rotation that is purely
determined by fixed asymptotic structures ðqab; ζâbÞ,
regardless of the presence of bulk radiation.
The choice of path defining RðθÞ generally affects its

value, but it is ultimately irrelevant: for our purposes, it
suffices that Rðθ0Þ ¼ I be the identity at the observer’s
initial angular position θ0, i.e., that the source- and star-
oriented tetrads initially coincide. As a result, the only
relevant contribution of RðθÞ to the transformation law of
the spin connection ω → RωR−1 þ RdR−1 stems from the
inhomogeneous term, which cancels as desired the unin-
teresting rotation due to the observer’s motion on a celestial
sphere. A star-oriented tetrad has thus been defined,
and one may finally use it to measure the precession of
gyroscopes.
Precession and memory.—This section presents our

results: a formula for the gyroscopic precession rate in
terms of shear and news tensors and the resulting
expression for net orientation memory [see Eqs. (11) and
(15) below]. We use the star-oriented frame f μ̂ and focus
on freely falling observers (accelerated observers are
addressed in [35]).
Any small freely falling gyroscope has a spin vector S

that is parallel transported along its world line: ∇uS ¼ 0 in
terms of proper velocity u. Now let ff μ̂g be a tetrad at the
gyroscope’s location such that f 0̂ ¼ u. Then the spin vector

may be written as S ¼ Sîf î and parallel transport becomes
equivalent to a precession equation

dSîðτÞ
dτ

¼ Ωî
ĵ
ðτÞSĵðτÞ; ð8Þ

where τ is the observer’s proper time and the angular
velocity (precession rate) matrix Ωî

ĵ
ðτÞ is the projection

along u of the spin connection ω of the tetrad ff μ̂g,

FIG. 3. In Bondi coordinates, the most natural tetrad feμ̂g is a
source-oriented one (with a radial vector er̂ aligned with outgoing
null geodesics). Converting such a frame into a tetrad ff μ̂g
pointing toward fixed distant stars requires a local rotation RðθÞ,
as in Eq. (7).
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Ωî ĵ ¼ −uαωα
î ĵ; ωμ

μ̂ ν̂ ≡ fμ̂α∇μfν̂α: ð9Þ

The gyroscope’s precession rate is thus wholly determined
by the spin connection evaluated along the observer’s
trajectory. In practice, it is simpler to compute the spin
connection of the source-oriented tetrad feμ̂g defined in
Eqs. (4)–(6), then use the rotation (7) to obtain the spin
connection of f μ̂. At leading order in 1=r along the world
line of the observer, this yields

ωr̂ â ∼ ζâ
a
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dθb

�
;

ð10aÞ
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where A½aBb� ≡ 1

2
ðAaBb − AbBaÞ. Note that this only

depends on the shear Cab and the news Nab, without
any influence of mass or angular momentum aspects: the
latter only appear in subleading terms that are neglected
here. [This notably includes Lense-Thirring precession
([34] Sec. 40.7) at order Oðr−3Þ.]
It is straightforward to obtain the angular velocity matrix

(9) from the geodesic velocity (4) and the spin connection
(10). Indeed, one finds Ωâ r̂ ¼ Oðr−3Þ and

Ωâ b̂ ∼
ϵâ b̂
r2

fM; fM≡ 1

4
DaDbC̃

ab −
1

8
NabC̃

ab; ð11Þ

where the “dual shear tensor” is C̃ab ≡ ϵcaCb
c in terms of

the Levi-Civita tensor density on the unit S2. This is our
first main conclusion: the precession of a gyroscope occurs,
at leading order, in the plane â b̂ orthogonal to incoming
radiation. Furthermore, the precession rate is proportional

to a celestially local current fMðu; θÞ, namely, the dual
covariant mass aspect [21,22] closely related to the
symmetry of asymptotically flat gravity under so-called
dual supertranslations [23–30]. As announced in the
Introduction, we have thus found that the precession caused
by gravitational waves probes a fundamental property of
the gravitational phase space. This point will be further
supported in the last subsection by a relation between
orientation memory and the generator of gravitational
electric-magnetic duality.
For future reference, it is useful to write tensors on

celestial spheres in terms of (pseudo)scalar functions with
definite parity. Let, therefore, angular momentum and shear
be written as

La ≡DaLþ þ ϵabDbL−; ð12aÞ

Cab ≡DðaDbÞCþ −
1

2
qabD2Cþ þ ϵcðaDbÞDcC−; ð12bÞ

where AðaBbÞ ≡ 1
2
ðAaBb þ AbBaÞ and the superscript þ

(respectively, −) denotes even (respectively, odd) functions.
The term linear in C in (11) can then be recast as
1
8
D2ðD2 þ 2ÞC−, which is manifestly odd. Furthermore,

the balance equation (2b) allows us to relate this term to the
time derivative of the odd component of angular momen-
tum and its flux as

fM ¼ _L− þ J − −
1

8
NabC̃

ab; ð13Þ

where J − ¼ D−2ðϵabDbJ aÞ and D−2 is the inverse of the
Laplacian on S2, involving Green’s function G such that
D2Gðθ; θ0Þ ¼ ð1= ffiffiffi

q
p Þδðθ − θ0Þ − ð1=4πÞ. This confirms

the expected absence of precession in nonradiative
space-times, since Nab ¼ 0 also implies _L− ¼ J − ¼ 0
(at least in the absence of Newman-Unti-Tamburino
charges [30]). Relative to fixed distant stars, precession
thus occurs only during the passage of a wave. It is
therefore meaningful to compute the net change of ori-
entation due to a burst of radiation.
Indeed, one can readily write the solution of the

precession equation (8) as a time-ordered exponential of
the matrix Ω acting on some initial spin Sinit. In practice,
only the first nontrivial term of this expansion is reliable,
since the angular velocity (11) is of order Oð1=r2Þ anyway
and higher-order terms of the exponential series are
affected by subleading 1=r corrections that have been
neglected here. Accordingly, the leading-order change of
orientation of the gyroscope’s axis is given by ΔSr̂ ¼
Oðr−3Þ and ΔSâ ¼ Φϵâ b̂Sb̂init þOðr−3Þ, where the rotation
angle in the â b̂ plane is obtained by integrating the
covariant dual mass aspect (13) over time,

Φ ¼
Z

du
fM
r2

¼ 1

r2

�
ΔL− þ

Z
du

�
J − −

1

8
NabC̃

ab

��
:

ð14Þ

The fact that Φ ≠ 0 is the aforementioned memory effect:
the passage of waves entails a permanent change of

orientation, sensitive to a specific combination fM of
metric components. The latter can be rewritten more
suggestively by “inverting” the parity decomposition
(12) under the assumption (without loss of generality) that
L� have vanishing average on S2, while C� both have
vanishing harmonics of order l ¼ 0, 1. This rephrases the
memory effect (14) as

Φ ¼ 8π

r2

�
ΔQY þ F Y −

1

64π

Z
duNabC̃

ab

�
; ð15Þ

where all terms on the right-hand side are evaluated
at θ and we have introduced a divergence-free vector field
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Yaðθ0Þ≡ϵabDbGðθ;θ0Þ, while QY≡ð1=8πÞH ffiffiffi
q

p
d2θ0YaLa

is the associated superangular momentum charge [33] and
F Y ≡ ð1=8πÞ H ffiffiffi

q
p

d2θ0YaJ a is its flux. This makes it
manifest that the first two terms of gyroscopic memory
(namely, ΔQþ F ) reproduce the spin memory effect [11].
Crucially, however, Eq. (15) involves an additional non-
linear term ∝

R
NabC̃

ab; the latter is nothing but the
Hamiltonian generator of local electric-magnetic duality
transformations on radiative phase space endowed with its
standard symplectic form [38]. This exhibits once more
the deep relation between gyroscopic memory and crucial
gravitational symmetries.
The nonvanishing value of (15) also illustrates the

general memory mechanism suggested in Fig. 2. In the
context of displacement memory [20], the “metric pertur-
bation” of Fig. 2 is the shear Cab and the net change
ΔCab measures the angular deviation of nearby geodesics.
Gyroscopic memory is more subtle in that respect, as
the perturbation should now be seen as a time integral
of dual shear through the dual covariant mass
aspect of Eq. (11). The presence of such time-integrated
metric perturbations is typical of subleading memory
effects [39–41].
To conclude, let us estimate the magnitude of the

memory effect (15): it falls off as 1=r2 and is in this sense
dominant with respect to Lense-Thirring precession, which
falls off as 1=r3. Could it then be possible to observe the
precession described here? The answer is unclear at the
moment, as realistic values of (15) are tiny. Indeed,
elementary dimensional analysis suggests that the order
of magnitude of (15) for a bound binary system with mass
scale M is

Φ ∼
G2

c4
M2

r2
≃ 2 × 10−39

�
M=M⊙

r=1 Mpc

�
2

; ð16Þ

where G is Newton’s constant, c is the speed of light in
vacuum, and M⊙ is the solar mass. This is manifestly
exceedingly weak for the common values of mass and
distance (M ≃ 30 M⊙ and r ≃ 400 Mpc for the seminal
LIGO Collaboration observation [1]). It is nevertheless
conceivable that the effect will some day be observable in
extreme events, such as supermassive black hole mergers,
for which values on the order of Φ ≃ 10−26 rad are not far-
fetched. Also note that the effect is independent of the
gyroscope’s spin and inertia, so one may even resort to
distant pulsars (whose high mass and low volume reduce
nongravitational environmental effects) as radiation probes.
Small rotations of a pulsar’s axis could then conceivably be
measured: for instance, aΦ ∼ 10−26 rad change in the angle
of an idealized narrow beam emitted 103 light years away
from the Solar System modifies the position of the resulting
light spot on Earth by about 10−7 m. We hope to further
develop some of these ideas in future work: it would be

fascinating indeed to observe gravitational memory effects
with the simple gyroscopic setup described here.
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