
Ergodicity Breaking Transition in Zero Dimensions

Jan Šuntajs and Lev Vidmar
Department of Theoretical Physics, J. Stefan Institute, SI-1000 Ljubljana, Slovenia

and Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia

(Received 22 March 2022; accepted 11 July 2022; published 5 August 2022)

It is of great current interest to establish toy models of ergodicity breaking transitions in quantum many-
body systems. Here, we study a model that is expected to exhibit an ergodic to nonergodic transition in the
thermodynamic limit upon tuning the coupling between an ergodic quantum dot and distant particles with
spin-1=2. The model is effectively zero dimensional; however, a variant of the model was proposed by
De Roeck and Huveneers to describe the avalanche mechanism of ergodicity breaking transition in one-
dimensional disordered spin chains. We show that exact numerical results based on the spectral form factor
calculation accurately agree with theoretical predictions, and hence unambiguously confirm existence of
the ergodicity breaking transition in this model. We benchmark specific properties that represent hallmarks
of the ergodicity breaking transition in finite systems.
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Introduction.—A fascinating property of isolated inter-
acting quantum many-body systems is their ability to
thermalize. This statement usually refers to the properties
of local observables [1–8], while many generic properties
of ergodic systems can often be understood by analyzing
statistical properties of their energy spectra and comparing
them to the predictions of random matrix theory [5,9].
Nevertheless, it was shown experimentally already

more than 15 years ago that isolated interacting quantum
many-body systems may not always thermalize [10], at
least on the experimentally relevant timescales [10–14].
One class of interacting quantum systems exhibiting
absence of thermalization and nonergodic dynamics
are integrable systems, the spin-1=2 Heisenberg chain
with translational invariance being a paradigmatic example
[15–18]. However, it is likely that in the thermodynamic
limit, nonergodicity in these systems is not robust against
adding small integrability breaking terms [19–28]. It is
therefore of great scientific interest to uncover other classes
of interacting quantum systems that exhibit robust counter-
examples to thermalization. Perhaps the most fascinating
property of such systems would be the emergence of an
ergodicity breaking phase transition between an ergodic
and a nonergodic phase.
Recent experimental activities have led to demonstrations

of different fingerprints of potentially robust nonergodic
dynamics in interacting quantum systems at experimentally
accessible times [29–33]. From the theoretical perspective,
however, it remains far from clear what are the universal
properties of ergodicity breaking transitions, which are the
relevant toy models, and what tools should one apply to
detect the transition.
The latter statement may be illustrated by the example of

a possible ergodicity breaking in spin-1=2 chains in random

magnetic fields that act as quenched disorder. It was
proposed that such systems, which are ergodic at weak
disorder, undergo an ergodicity breaking phase transition
upon increasing the disorder [34]. While the fate of this
transition in the thermodynamic limit is still under debate
[35–52], it was noticed that many properties of finite
systems at rather large disorder appear to be nonergodic;
however they may eventually become ergodic in the
thermodynamic limit [35]. This perspective has been then
further supported using various different theoretical and
numerical arguments [39–41,53–55].
Based on the above arguments, it appears crucial to

establish generic toy models of ergodicity breaking tran-
sitions, for which theoretical predictions and exact numeri-
cal results agree both qualitatively and quantitatively.
In this Letter, we achieve this goal for an interacting

FIG. 1. Sketch of the model from Eq. (1). Interactions of
particles within the dot (blue circle) are described by a random
matrix. A particle j outside the dot experiences the magnetic field
hj, and its distance from the dot is uj. The coupling ampli-
tude between a particle j and a randomly selected particle in the
dot is g0αuj .
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zero-dimensional model sketched in Fig. 1, which is
expected to exhibit features of the avalanche mechanism
introduced by De Roeck and Huveneers [56]. Based on the
spectral form factor (SFF) analysis, we benchmark several
properties of the ergodicity breaking transition, such as
(a) signatures of a universal SFF shape at the transition
point, (b) exponential dependence of the Thouless time on
both the system size and the interaction, which can be
detected already deep in the ergodic regime, and (c) extrac-
tion of a diverging length scale at the transition. We argue
that these properties may represent hallmarks of an ergo-
dicity breaking transition (EBT) in finite systems.
Model.—We study a model of spin-1=2 particles that

consists of two subsystems, as sketched in Fig. 1: a
subsystemofN particles with all-to-all interactions (referred
to as a “dot”), and a subsystem ofL particles outside the dot,
where each particle is only coupled to a single particlewithin
the dot. The full model Hamiltonian reads

Ĥ ¼ Rþ
XL
j¼1

g0αuj Ŝ
x
nj Ŝ

x
j þ

XL
j¼1

hjŜ
z
j: ð1Þ

Properties of N particles within the dot are described by a
2N × 2N random matrix R drawn from the Gaussian
orthogonal ensemble (GOE) that acts nontrivially on dot’s
degrees of freedom only. The fields hj that act on particles
outside the dot are drawn from a random box distribution,
hj ∈ ½0.5; 1.5�. In the coupling term, Ŝxnj acts on a randomly
selected site nj within the dot, while Ŝ

x
j acts on the particle j

outside the dot. The tuning parameter of the coupling
strength g0αuj is the parameter α (we set g0 ≡ 1), while
uj represents the distance between a coupled particle and the
dot. The latter is sampled from a random box distribution
uj ∈ ½j − ζj; jþ ζj�. Apart from the energy conservation,
the system has no other conservation laws and its

corresponding total Hilbert space dimension equals
D ¼ 2NþL. We set N ¼ 3 and ζj ¼ 0.2 throughout the
study (see [57] for details).
A similar version of the model was used in

Refs. [56,61,62] in the description of the avalanche
mechanism in one-dimensional (1D) strongly disordered
spin chains, and a related model was studied in Ref. [63] to
shed light on instability of nonergodicity in higher dimen-
sions. Here, we argue that the model [Eq. (1)] is a zero-
dimensional model since the thermodynamic limit is
obtained by sending the number of particles outside the
dot L → ∞ while their coordination number z ¼ 1, and the
number of particles within the dotN are fixed. Accordingly,
we treat the model as a toy model to describe the EBT in
zero dimensions and steer away from making any pre-
dictions regarding 1D (or higher-D) systems.
Spectral form factor (SFF).—The central quantity in our

study is the SFF KðτÞ, which is the Fourier transform of the
two-point spectral correlations, defined as

KðτÞ ¼ 1

Z

�����
XD
n¼1

ρðεnÞe−i2πεnτ
����
2�

: ð2Þ

Here, fε1 ≤ ε2 ≤ � � � εDg is the complete set of
Hamiltonian eigenvalues after spectral unfolding, τ is the
scaled time, and the average h…i is carried out over
different realizations of Ĥ. We follow the implementation
of KðτÞ from [35], which is for convenience summarized in
the Supplemental Material [57] (the normalization Z and a
smooth filtering function ρðεnÞ that eliminates contribu-
tions of the spectral edges are provided there). Numerically,
we study systems with up to Lþ N ¼ 17 sites, thus
requiring full exact diagonalization of matrices up to
dimension D ×D, where D ¼ 217 ¼ 131072.

(a) (b)

FIG. 2. Spectral form factor KðτÞ at different system sizes L. Dashed-dotted lines denote the GOE results KGOEðτÞ ¼
2τ − τ lnð1þ 2τÞ, open circles denote the extracted values of τTh, and the vertical dashed line is the scaled Heisenberg time
τH ¼ 1. (a) KðτÞ at α ¼ αc ¼ 0.75. The horizontal dotted line is the fit KðτÞ ≈ 0.38. (b) KðτÞ at α ¼ 0.85. The inset shows the raw data
while in the main panel we rescale τ → τ expðbLÞ, where b ¼ 0.353, such that the rescaled values of τTh coincide. See [57] for a detailed
description of the numerical extraction of τTh.
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Our main intuition for why the SFF should represent a
useful tool to detect the EBT is based on the analysis of the
localization transition in the three-dimensional (3D)
Anderson model [64], for which the transition point is
known to high accuracy [64,65]. At the transition point in
the 3D Anderson model, KðτÞ exhibits a universal shape
that is independent of the system size for a wide interval of
τ, and it consists of two regimes [64]: KðtÞ ≈ const
at τ ≪ 1, followed by a short interval around τ ≲ 1
where KðτÞ ≈ KGOEðτÞ ¼ 2τ − τ lnð1þ 2τÞ. We define
the Thouless time τTh (in scaled units) as the time when
the SFF KðτÞ approaches the GOE prediction KGOEðτÞ. If
KðτÞ is universal and independent of system size L, the
same holds true for τTh. One can hence consider independ-
ence of τTh on L as a criterion for the transition.
Remarkably, a very similar structure of KðτÞ is also

observed in the model from Eq. (1), which is shown in
Fig. 2(a) at α ¼ 0.75. At this value of α, KðτÞ appears to
exhibit the most L-independent form (apart from the short
time limit τ → 0 when KðτÞ ≫ 1). The value of KðτÞ in the
broad τ-independent regime is KðτÞ ≈ 0.38, which is very
close to the one in the 3D Anderson model at the transition
point (cf. Fig. 8(a) in [64]).
Before proceeding, we note that our results suggest the

EBT to occur at α ≈ 0.75, and hence we set αc ¼ 0.75
further on. Some analytical arguments (to be presented
below and also in [56,61]) predict the transition to occur at
ᾱ ¼ 1=

ffiffiffi
2

p
≈ 0.71. While our numerical results are not

inconsistent with the latter prediction, we also refrain from
making any sharp predictions of the transition point in
systems much larger than those studied here, or in systems
with a different choice of model parameters.
Figure 2(b) displays results for KðτÞ in the ergodic

regime at α ¼ 0.85. In the inset we show that τTh → 0 in the
thermodynamic limit L → ∞, which can be seen as a
hallmark of ergodicity. The most remarkable property of
KðτÞ can be observed when the scaled time τ is multiplied
by a factor expðbLÞ, where b is a constant. Results shown
in the main panel of Fig. 2(b) suggest that after this
rescaling, the Thouless time becomes nearly independent
of L. This indicates that the Thouless time in physical units
scales exponentially with L in the ergodic regime, and will
be analyzed in more detail below.
Thouless time in the ergodic regime.—From now on we

consider the Thouless time in physical units, which is
defined as tTh ¼ τThℏ=δE, where δE is the mean level
spacing [57] and we set ℏ≡ 1. In Fig. 3(a), we show tTh
versus L in a log-linear scale at different α in the ergodic
regime, and at α ¼ αc. The results suggest that tTh increases
exponentially with L, at least in the regime α ≲ 0.87. This
is corroborated in the inset of Fig. 3(b) where the same
results are shown on a log-log scale, exhibiting a growth
with L that is faster than power law. We describe these
results with the ansatz

tTh ∝ efL: ð3Þ

An important property of this ansatz is that f ¼ fðαÞ is a
function of the coupling strength, as evident from the
varying slopes of tThðLÞ in a log-linear scale in Fig. 3(a).
The dashed-dotted line in Fig. 3(a) denotes the scaling with
L of the Heisenberg time tH ¼ 1=δE, which has the same
slope as tThðLÞ at α ¼ αc.
We can explain the relation in Eq. (3) by a rather crude

and simple approximation, which is however accurate
enough for building our intuition about the key scaling
relations in the system. Since tTh may be seen as the longest
physically relevant timescale, we estimate its inverse,
denoted E�

Th, by the coupling of the farthermost particle
to the dot, gL ¼ αL. Using the Fermi golden rule argu-
ments, one gets E�

Th ¼ g2L=ε, where ε ¼ Oð1Þ [61]. Then,
t�Th ¼ 1=E�

Th is given by

t�Th ∝ α−2L ¼ elnð
1

α2
ÞL: ð4Þ

(a)

(b)

FIG. 3. (a) Scaling of the Thouless time tTh with L on a log-
linear scale for different values of α (symbols). Dashed lines are
fits to Eq. (3), while the dashed-dotted line is the scaling of the
Heisenberg time tH . The same results are shown in the inset of
(b) on a log-log scale, where dashed-dotted lines are guides to the
eye with the same slope as the power-law fits to the numerical
data. (b) Dependence of f on ln α, where f is obtained by fitting
Eq. (3) to the results for tThðLÞ. Line is the fitted function fðαÞ ¼
1.32 ln ð1=α2Þ − 0.12.
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In the main panel of Fig. 3(b) we plot the rates f, obtained
by fitting Eq. (3) to the actual numerical results, versus
ln α. We fit the ansatz fðαÞ ¼ a1 ln ð1=α2Þ þ a0 to the
results in the interval α ∈ ½0.75; 0.87�, and get a1 ¼ 1.32,
a0 ¼ −0.12. This is indeed reasonably close to the
prediction by Eq. (4), fðαÞ ¼ ln ð1=α2Þ, which assumes
a1 ¼ 1 and a0 ¼ 0.
Criterion for the EBT.—We next discuss the connection

of the results presented so far with the emergence of EBT.
We expect that the system is ergodic when the Thouless
time tTh increases slower than the Heisenberg time
tH ∝ 2L ¼ elnð1=ᾱ2ÞL, where ᾱ ¼ 1=

ffiffiffi
2

p
, while the onset

of nonergodic behavior occurs when both times scale
identically. This gives rise to the criterion for the EBT

tH
tTh

¼ const: ð5Þ

As argued in our discussion of Fig. 2(a), this criterion in the
3D Anderson model is a natural consequence of the
universal, L-independent shape of its SFF at the transition.
As argued in [57], the criterion from Eq. (5) is also
consistent with the hybridization condition as a criterion
for the EBT as used, e.g., in [56].
The criterion from Eq. (5) is tested in Figs. 4(a) and 4(b)

for the numerically extracted values of tTh and tH. They
suggest the EBT to occur at α ≈ αc ¼ 0.75, at which tH=tTh
as a function of L is nearly constant [see Fig. 4(a)], and the
curves for tH=tTh at different L, plotted as a function of α,
cross at α ¼ αc [see Fig. 4(b)]. These results are consistent
with the universal, L-independent shape of the SFF KðτÞ at
α ¼ αc being the hallmark of the EBT; see Fig. 2(a).
Considering Eq. (4) as a relevant approximation of tTh,

one can express the criterion from Eq. (5) as

tH
tTh

¼
�
Ae

L
ξ0 ; α > ᾱ

Ae−
L
ξ1 ; α < ᾱ

; ð6Þ

where the characteristic lengths ξ0 and ξ1 in the ergodic
ðα > ᾱÞ and nonergodic ðα < ᾱÞ regimes, respectively, are
defined as

ξ0 ¼
1

ln ðαᾱÞ2
; ξ1 ¼

1

ln ðᾱαÞ2
: ð7Þ

One may think of an inverse of the characteristic lengths,
say 1=ξ0, as the difference 1=ξ0 ¼ 1=ξρ − 1=ξc, where
ξρ ¼ 1= lnð1=ᾱ2Þ sets the decay of the mean level spacing
and ξc ¼ 1= lnð1=α2Þ sets the decay of the weakest cou-
pling to the dot.
We fit the exponential function from Eq. (6), where A

and ξ0 (ξ1) are fitting parameters, to the numerical results in
the main panel in Fig. 4(a). The extracted characteristic
lengths ξ0 and ξ1 indeed exhibit a tendency to diverge at the
transition point αc. We fit the characteristic length ξ0 on the

ergodic side with a function c1= lnðα=αcÞ2, where
αc ¼ 0.75, and obtain c1 ¼ 0.80. These results are fairly
close to the prediction from Eq. (7), which assumes αc ¼
ᾱ ¼ 0.71 and c1 ¼ 1. We note that despite a reasonably
good agreement between numerical results and analytical
considerations, the latter may be refined in several ways,
which we discuss in [57] in more detail.
Conclusions.—In this Letter, we analyzed the model that

we suggest to be the toy model of the EBT in a zero-
dimensional interacting system. It exhibits three hallmarks
of the EBT. The first is a universal, system-size indepen-
dent form of the SFF at the transition point, which strongly
resembles the single-particle SFF of the 3D Anderson
model at the localization transition. Determining the
analytical form of the universal SFF at the transition, as
well as understanding the origin of agreement between the
noninteracting 3D Anderson model and the interacting
zero-dimensional model studied here, remains an open
question for future research.
Another important feature is the exponential scaling of

tTh in the ergodic regime with the system size L, where the

(a)

(b)

FIG. 4. (a) The ratio tH=tTh versus L at different α. Symbols are
numerical results, while lines are fits of the exponential function
from Eq. (6), where A and ξ0 (ξ1) are fitting parameters. Inset:
characteristic lengths ξ0, ξ1, extracted from the fits in the main
panel (symbols). Solid line is a one-parameter fit of a function
c1= lnðα=αcÞ2 to ξ0 in the ergodic regime, where we set αc ¼ 0.75
(vertical dashed-dotted line) and obtain c1 ¼ 0.8 from the fit. The
horizontal dashed line denotes L ¼ 14, i.e., the largest attainable
system size. (b) log10ðtH=tThÞ versus α at different L. Vertical line
denotes αc ¼ 0.75.
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rate is a function of the interaction that drives the EBT. In
fact, this scaling is observed already deep in the ergodic
regime where the level spacing ratio of adjacent gaps r
(see [57]) agrees with the GOE prediction, r ≈ 0.53. To our
best knowledge, such a scaling of tTh has so far not been
observed in interacting disordered systems in dimension
one or higher.
Finally, both analytical arguments and numerical results

for the criterion of the EBT show a divergent characteristic
length at the transition. This length is, in the vicinity of the
transition, much larger than the numerically accessible
system sizes L. In the future work it may be instructive to
study other measures of the transition that are not based on
spectral properties, and to explore their common features.
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