
Maximal Quantum Chaos of the Critical Fermi Surface

Maria Tikhanovskaya,1 Subir Sachdev ,1,2 and Aavishkar A. Patel 3

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, USA
3Department of Physics, University of California Berkeley, Berkeley, California 94720, USA

(Received 14 February 2022; accepted 14 July 2022; published 3 August 2022)

We investigate the many-body quantum chaos of non-Fermi liquid states with Fermi surfaces in two
spatial dimensions by computing their out-of-time-order correlation functions. Using a recently proposed
large N theory for the critical Fermi surface, and the ladder identity of Gu and Kitaev, we show that the
chaos Lyapunov exponent takes the maximal value of 2πkBT=ℏ, where T is the absolute temperature. We
also examine a phenomenological model that can be continuously tuned between a non-Fermi liquid
without quasiparticles and a Fermi liquid with quasiparticles. We find that the Lyapunov exponent becomes
smaller than the maximal value precisely when quasiparticles are restored.
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The study of relaxational and thermalization phenomena
in quantum many-body systems has long relied on the
quasiparticle decomposition of many-body states, and the
collisions of quasiparticles described by the Boltzmann
equation and its generalizations. However, this powerful
method is not reliable when we address similar phenomena
in non-Fermi liquids without any quasiparticle excitations.
General arguments have been presented that such dissipa-
tive phenomena cannot occur at a rate which is parametri-
cally larger than kBT=ℏ as the absolute temperature T → 0
(so such a rate cannot vanish as Ta, with an exponent
a < 1), and systems without quasiparticles have a rate of
order kBT=ℏ [1–6].
New insights into such issues have emerged from recent

advances in the study of many-body quantum chaos and
out-of-time-order correlators (OTOCs), for which the
bounds on dissipative rates can be made precise.
Inspired by holographic connections to the quantum
dynamics of black holes, Maldacena, Shenker, and
Stanford [7] established that the Lyapunov exponent, λL,
characterizing the temporal growth of the OTOC must be
smaller than 2πkBT=ℏ. We can expect that any system
which is close to this bound as T → 0 cannot have a
quasiparticle description, and this conclusion is supported
by computations on the Sachdev-Ye-Kitaev (SYK) model
[8,9]. Although difficult to measure in experiments,
OTOCs have therefore emerged as an alternative to the
Boltzmann equation, and are a valuable diagnostic of the
physics of nonquasiparticle systems.
In this Letter, we address the OTOC of a class of non-

Fermi liquids most relevant to correlated electron systems
[10]. We consider a Fermi surface coupled to a U(1) gauge
field in two spatial dimensions, but our theory also
applies to Fermi surfaces coupled to other critical bosons,
as are realized near symmetry-breaking quantum phase

transitions in metals with a zero momentum order param-
eter. The OTOC of such a system was addressed in previous
work [11] in an uncontrolled analysis: it was found that
λL ¼ αkBT=ℏ as T → 0 with the constant α < 2π. The
present Letter will present new results on this model which
build on two recent developments: (i) Gu and Kitaev (GK)
[12] have shed new light on the structure of OTOCs in
spatially extended systems. They established a ladder
identity which shows that there is an additional contribution
to the OTOC that arises from a pole at imaginary momen-
tum, in the complex momentum plane. Provided the chaos
butterfly velocity vB is large enough, the pole contribution
dominates at large spatial distances, and the resulting
growth of the OTOC with time has exponent λL exactly
equal to 2πkBT=ℏ. (ii) A systematic approach to the study
of the two-dimensional non-Fermi liquid state has been
proposed [13,14]. This approach obtains the non-Fermi
liquid as the large N saddle point of a path integral over
bilocal Green’s functions and self energies. The new idea
here is to study an ensemble of theories with different
random couplings (but without spatial randomness), under
the hypothesis that all of them flow to the same universal
fixed point theory at low energies. Such a large N saddle
point is ideally suited to develop a systematic computation
of the OTOC, along the lines of computations on the
SYK model.
In our large N analysis of the two-dimensional non-

Fermi liquid, we find that the butterfly velocity does indeed
satisfy the needed inequality of GK. This leads to our main
result: that the Lyapunov exponent of this system equals the
maximal value of 2πT (ℏ ¼ kB ¼ 1 henceforth).
The model.—Our results are obtained within the “patch”

theory of the two-dimensional non-Fermi liquid [15,16],
which describes the low energy properties of the Fermi
surface without quasiparticles. Each point on the Fermi
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surface is characterized by a Fermi velocity vF, and Fermi
surface curvature κ=vF. We introduce fermion fields ψ�;j

(j ¼ 1…N) defined in patches (�) near antipodal points,
using the coordinate system shown in Fig. 1. The
dispersion of the fermions in this coordinate system is
εk ¼ �vFkx þ ðκ=2Þk2y, and we will henceforth use length
scales in which vF ¼ 1 and κ ¼ 2. These fermions are
coupled to bosons ϕl (l ¼ 1…M), which is the transverse
component of the gauge field, or a symmetry breaking
order parameter. The universal properties of the critical
Fermi surface in this patch theory are then described by the
Lagrangian density

L ¼
X
r¼�

XN
j¼1

ψ†
r;jð∂τ − ir∂x − ∂

2
yÞψ r;j

þ
X
r¼�

XM
l¼1

XN
ij¼1

gijl
N

rsψ†
r;iψ r;jϕl þ

1

2

XM
i¼1

ð∂yϕiÞ2: ð1Þ

Here s ¼ 0 for the nematic order parameter, and s ¼ 1 for
the gauge field; the value of s will not be important for any
results here. The large N limit [13] is taken at fixed M=N,
and for an ensemble of theories with spatially uniform (but
flavor random) Yukawa couplings gijl, which have zero

mean and root mean square value g (jgijlj2 ¼ g2). The
scaling limit of the boson [DðkÞ] and fermion [GrðkÞ]
Green’s functions can be computed exactly in the large N
limit [k ¼ ðk; k0Þ ¼ ðkx; ky; k0Þ, where k0 is an imaginary
Matsubara frequency]

DðkÞ¼ jkyj
jkyj3þcbjk0jþm2

;

½GrðkÞ�−1¼ rkxþk2y− iμðTÞsgnðk0Þ

− icfsgnðk0ÞT2=3H1=3

�jk0j−πTsgnðk0Þ
2πT

�
; ð2Þ

where H1=3ðzÞ ¼ ζð1=3Þ − ζð1=3; zþ 1Þ the analytically
continued harmonic number function of order 1=3, and cf
and cb are coupling dependent constants:

cf ¼ M
N
24=3g4=3

33=2
; cb ¼

g2

4π
: ð3Þ

We have also introduced a finite but small mass m2 in
the boson Green’s function as an infrared regulator, and
μðTÞ ¼ g2T=ð3 ffiffiffi

3
p

m2=3Þ. We will eventually take the
m → 0 limit, and obtain a finite answer for the OTOC.
To solve for the OTOC we use retarded and Wightman
Green’s functions, the forms of which we discuss in the
Supplemental Material [17]. For simplicity, we will also
henceforth consider only the þ patch on the Fermi surface
and drop the patch indices [18]: in the Supplemental
Material [17], we show that the interactions between
antipodal patches do not change the behavior of the OTOC.
The OTOC.—We will be interested in the OTOC con-

tained within the squared anticommutator of fermionic
operators

Cxðt; 0Þ ¼
1

N2
θðtÞ

XN
i;j¼1

Tr½e−βH=2fψ iðx; tÞ;ψ†
jð0Þg

× e−βH=2fψ iðx; tÞ;ψ†
jð0Þg†�: ð4Þ

The function in (4) contains the OTOC
hψ iðx; tÞψ†

jð0Þψ†
i ðx; tÞψ jð0Þi (up to insertions of e−βH=2),

which describes chaos in the system and grows exponen-
tially as ∼eλLt þ � � �. We are interested in the spatial
structure of (4) in the long time limit at large jxj. After
Fourier transforming the spatial arguments to momentum
space, and considering 4 distinct times for the fermion
operators (see Fig. 1 in the Supplemental Material [17]), we
generalize the construction of Kitaev and Suh [9] to argue
that the early time OTOC can be written using a single
mode ansatz

OTOCpðt1; t2; t3; t4; k; k0Þ

≈
eλLðpÞðt1þt2−t3−t4Þ=2

CðpÞ ϒR
p ðt12; kÞϒA

pðt34; k0Þ: ð5Þ

Here the ϒ’s are vertex functions which only modify the
overall magnitude of the OTOC. It was later shown by GK
that the behavior of CðpÞ is important for determining λL.
As we review in the Supplemental Material [17], CðpÞ has
the important factor

CðpÞ ∼ cos
λLðpÞ
4T

; ð6Þ

which vanishes at the maximal value of λLðpÞ ¼ 2πT. The
resulting pole in (5) will ultimately be responsible for the
maximal chaos in the non-Fermi liquid.

FIG. 1. Antipodal patches � on the Fermi surface.
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Now we can transform back to position space and obtain

OTOCxðt1;t2;t3;t4Þ∼
uðx;tÞ
N

Z
k;k0

ϒR
p ðt12;kÞϒA

pðt34;k0Þ; ð7Þ

where t ¼ ðt1 þ t2 − t3 − t4Þ=2 and

uðx; tÞ ∼
Z
p

eλLðpÞtþip·x

cos½λLðpÞ=ð4TÞ�
: ð8Þ

In the previous work [11], the chaos exponent was
identified with λLð0Þ. GK performed a careful evalu-
ation of the integral in (8) in one spatial dimension,
and gave conditions under which it was dominated by
the saddle point [λ0Lðp ¼ psÞtþ ix ¼ 0] or the pole
[λLðp ¼ p1Þ ¼ 2πT]. Both the saddle point and the pole
appear for purely imaginary values of momenta, with
p ¼ ijpj. When jpsj > jp1j, GK showed that the pole
dominates, leading to a region of spacetime in which

maximal chaos occurs. Conversely, when jpsj < jp1j, the
saddle point dominates, and there is no maximal chaos.
At first sight, it is not clear whether this one-dimensional

analysis can be extended to the anisotropic two-dimen-
sional non-Fermi liquid theory in (1). However, the theory
in (1) has a “sliding symmetry” [16], which implies that λL
is a function only of px þ p2

y. This reduces the momentum
integral in (8) to effectively a one-dimensional integral, and
we can replace p · r by pxx and directly apply the results
of GK.
The Lyapunov exponent.—The remaining missing ingre-

dient in determining whether the saddle point or the pole
dominates for the critical Fermi surface is a knowledge of
λLðpÞ for imaginary p. For this we need to solve the Bethe-
Salpeter equation for the squared anticommutator C in
Fig. 2, with an imaginary external momentum. This leads to
the following eigenvalue equation, extending the previ-
ously obtained equation [11] to an imaginary external
momentum px ¼ ijpxj

�
cfT2=3

�
H1=3

�
−ik0 − πT

2πT

�
þH1=3

�
−iðω − k0Þ − πT

2πT

��
− jpxj þ 2μðTÞ

�
Cðk0;ω; ijpxjÞ

¼ g2
M
N

Z
dk00dk

0
y

ð2πÞ2
cbðk0 − k00Þjk0yj

ðjk0yj3 þm2Þ2 þ c2bðk0 − k00Þ2
Cðk00;ω; ijpxjÞ

sinh k0−k00
2T

þ g4=34π4=3

3
ffiffiffi
3

p M
N

Z
dk00dk01
ð2πÞ2

ðik01 þ ð−ik01Þ2=3ðiðk01 − ωÞÞÞ
k01ðiðk01 − ωÞÞ1=3ð2k01 − ωÞ

Cðk00;ω; ijpxjÞ
cosh k0−k01

2T cosh k0
0
−k01
2T

: ð9Þ

We note that the factors of M=N on the rhs of (9) cancel
with those in the definition of cf in them → 0 limit, up to a
rescaling of px → ðN=MÞpx. Therefore, considering M ≠
N will not affect any of our conclusions, and we will
henceforth consider M ¼ N for simplicity.
Maximal chaos.—Upon solving the eigenvalue equa-

tion (9), we obtain the Lyapunov exponent as a function of
the external imaginary momentum px ¼ ijpxj. From Fig. 3,
the values of the pole (p1 ¼ ijp1j) and saddle point
(ps ¼ ijpsj) momenta can be obtained. The pole follows
from λLðp ¼ p1Þ ¼ 2πT, whereas for the saddle point, one
needs to consider an additional condition, since the saddle

FIG. 2. The Bethe-Salpeter equation for Cðk0;ω; ijpxjÞ, which
is exact at large N. Solid lines are fermion propagators, wavy
lines are boson propagators, and dashed lines are averaging over
the flavor random couplings. The horizontal lines represent the
retarded Green’s functions and vertical lines are Wightman
propagators.

FIG. 3. Plot of the Lyapunov exponent λL=T as a function of jpxj.
jpxj is presented in units of g4=3T2=3. We find jp1j ≈ 0.65g4=3T2=3

and jpsj ≈ 1.04g4=3T2=3. Since jpsj > jp1j, the butterfly velocity is
given by vB ¼ 2πT=jp1j ≈ 9.67g−4=3T1=3 (slope of the black solid
line). We also find the value of the velocity at the saddle point
vs ¼ 9.01g−4=3T1=3 (slope of the blue solid line). As expected from
previous work [11], we find λLð0Þ ¼ 2.48T.
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point equation λ0Lðp ¼ psÞtþ ix ¼ 0 does not define the
value of jpsj. This condition follows from the fact that the
ansatz (7) is valid only in the regime where initial corre-
lations and nonlinear effects can be ignored, which is when
OTOCxðt1; t2; t3; t4Þ ≫ 1=N, and therefore uðx; tÞ ∼ 1.
This gives the condition on the saddle point value λLðp ¼
psÞtþ ipsx ¼ 0 [12]. Combining this equation with the
saddle point equation, we can then obtain jpsj from the
graphical solution of λ0Lðp ¼ psÞ ¼ λLðp ¼ psÞ=jpsj.
As shown in Fig. 3, jp1j is significantly smaller than

jpsj. Specifically, we find jp1j ≈ 0.65g4=3T2=3 and jpsj≈
1.04g4=3T2=3 > jp1j, which confirms the dominance of the
pole contribution according to GK. The chaos wavefront
therefore travels with a butterfly velocity vB ¼ 2πT=jp1j
set by the pole contribution. We note that λLðpxÞ does not
depend upon the coupling g, as g can be removed by
rescaling the external momentum px → px=g4=3. With no
other dimensionful parameters in (9), this also implies that
λL is proportional to temperature.
Phenomenological models.—We extend our analysis to

non-Fermi liquids with dynamical critical exponent
2 < z ≤ 3, in which quasiparticle excitations are still
absent, and compute the Lyapunov exponents. For those
theories, the boson Green’s function has the form [13]

DðkÞ ¼ jkyj
jkyjz þ cbjk0j þm2

;

and the fermion self energy scales as Σ ∼ isgnðk0Þjk0j2=z
(z ¼ 3 for the original theory discussed earlier). Since
jΣj ≫ jk0j, quasiparticle excitations are not well defined in
terms of the fermion spectral function.
The form of the eigenvalue equation for the OTOC

changes slightly, and is discussed in the Supplemental
Material [17]. As we show in the Fig. 4, for each of these
theories the butterfly velocity is also given by
vB ¼ 2πT=jp1j, and the Lyapunov exponent is maximal.
To show this, we first solve the eigenvalue equations up to
the pole momentum p1. We then compare the instantaneous
slope at p1, which we call v�, and the velocity
v1 ¼ 2πT=jp1j. For each plot we obtain v1 > v�. Since
each of the curves in Fig. 4 is a positive, monotonically
increasing, and convex function, this implies that
jpsj > jp1j, and the pole contribution therefore dominates
with maximal chaos just like in the z ¼ 3 case. We can
further find the behavior of the exponent in the Fermi liquid
case of 1 < z < 2, in which quasiparticles are present. In
this regime, jΣj ∼ jk0j2=z ≪ jk0j, and therefore the quasi-
particle peak in the fermion spectral function is well
defined. Similar to the discussion above, we can compute
the Lyapunov exponent as a function of external momen-
tum on imaginary axis and explicitly find jpsj and jp1j. For
a particular case of z ¼ 3=2 [19], we find that the saddle
point dominates as jpsj ≈ 4.32, which is smaller than
jp1j ≈ 7.84. The resulting butterfly velocity in this case

is vB ≈ 0.8vF, where vF ¼ 1 is the Fermi velocity. This
result is expected from a general point of view: for a free
fermion theory the exponent is a simply linear function of
the external momentum λLðijpxjÞ ¼ jpxj leading to the
saddle point contribution at jpsj ¼ 0. We therefore expect
that for any theory with quasiparticles, the pole contribution
is negligible compared to a saddle point contribution, and
the maximal chaos is no longer present (Supplemental
Material [17]).
Discussion.—It is quite remarkable that the generic low

energy theory of Fermi surfaces without quasiparticles in
two spatial dimensions displays maximal chaos in the large
N limit. Other spatially extended models connected to the
SYK model (e.g., [20,21]), and certain conformal field
theories [22–24], have been shown to display maximal
chaos, but none of them have spatially dependent Green’s
functions and live in more than one spatial dimension. It is
also remarkable that the critical Fermi surface displays
maximal chaos without the presence of conformal sym-
metry, which also sets it apart from the previously men-
tioned examples that have conformal symmetry.
We believe that the maximal chaos of the Fermi surface

is linked to the local nature of the singular self energy of
the fermion at large N, i.e., the self energy is frequency
dependent, but independent of momentum, a feature the
Fermi surface theory shareswith the SYKmodel (alongwith
the local frequency-only dependence of the fermion pairing
vertex [13]). There are small contributions to the fermion
anomalous dimension at 3-loop order [16], which are
expected to make the self energy nonlocal, and it remains
to be seen if such effects could reduce the maximal
Lyapunov exponent. However, since jpsj − jp1j is Oð1Þ

v1 − v∗

FIG. 4. Main plot: resulting plots of the Lyapunov exponent
λL=T as a function of jpxj, for different values of the dynamical
critical exponent 2 < z ≤ 3. The slopes of the black dashed lines
are the butterfly velocities vB. Inset: difference between v1 ¼ vB
and the instantaneous slopes at px ¼ p1 (i.e., v�). The difference
is always positive, i.e., λLðijp1jÞ=jp1j > λ0Lðijp1jÞ, which shows
that the value of jpsj, where λLðijpsjÞ=jpsj ¼ λ0LðijpsjÞ, must be
larger than jp1j, leading to maximal chaos according to GK.
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at large N (Fig. 3), we expect that the small Oð1=NÞ
corrections to this quantity will not immediately be able
to change its sign and thus reduce the maximal Lyapunov
exponent.
We also examined a phenomenological model of a

critical Fermi surface with dynamic critical exponent
z ≤ 3; quasiparticles reemerge in such a model for
z < 2. We found that the maximal chaos was retained
for precisely the regime where quasiparticles are absent,
2 < z ≤ 3, although the size of the spacetime region for
which it occurs shrinks to zero as z → 2 (Fig. 5). It is also
remarkable that the acceleration of chaos to the maximal
rate by the butterfly effect is tied to the destruction of
quasiparticles in this model. When quasiparticles are
present, we found that the saddle-point contribution domi-
nated with λL ∼ T2=z ≪ T, which is parametrically smaller
than the maximal rate (Supplemental Material [17]).
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