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We present a quantitative approach to the self-dynamics of polymers under steady flow by employing a
set of complementary reference frames and extending the spherical harmonic expansion technique to
dynamic density correlations. Application of this method to nonequilibrium molecular dynamics
simulations of polymer melts reveals a number of universal features. For both unentangled and entangled
melts, the center-of-mass motions in the flow frame are described by superdiffusive, anisotropic Gaussian
distributions, whereas the isotropic component of monomer self-dynamics in the center-of-mass frame is
strongly suppressed. Spatial correlation analysis shows that the heterogeneity of monomer self-dynamics
increases significantly under flow.
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Polymeric liquids exhibit complex and fascinating flow
behavior [1]. Despite the remarkable theoretical progress
brought about by the tube model [2–4], understanding the
molecular dynamics of long-chainmolecules under flow still
faces formidable challenges. In particular, little is known
about how the tube diameter and number of entanglements—
key theoretical constructs in models of entangled polymers
—change under flow [5–11]. Moreover, characterizations of
these quantities in computer simulations often rely on ad hoc
algorithms [12–20], whose validity cannot be unequivocally
demonstrated in the deformed state. Any direct attack on this
problem must confront the microscopic nature of polymer
entanglements, which is yet to be firmly established in the
equilibrium state, let alone the nonequilibrium state.
To circumvent this theoretical difficulty and provide a

solid phenomenological basis for understanding the non-
equilibrium dynamics of polymers under flow, we turn our
attention to density self-correlation functions, which are
fundamental and well-defined quantities for describing
liquid dynamics [21]. Despite numerous attempts in the
past to characterize the self-motions of complex fluids
under flow [22–32], an effective and systematic approach
has not emerged. Here, we outline a quantitative method for
analyzing the density self-correlation of polymers under
steady flow by extending the spherical harmonic expansion
technique [33–37] to dynamic density correlation func-
tions. A key idea is to examine the polymer self-dynamics
in two complementary coordinates: the center-of-mass
(c.m.) motions in the flow frame and the segmental motions
in the c.m. frame. Application of this approach to non-
equilibrium molecular dynamics (NEMD) simulations
permits a direct, quantitative analysis of anisotropic self-
correlations, unveiling a number of universal features. First,
the c.m. displacements of polymer melts in the flow frame
follow a superdiffusive anisotropic Gaussian distribu-
tion with the mean-squared displacement (MSD) g̃cm ∼ tγ

(1 < γ < 2), as a result of the interchain interactions in
response to the imposed deformation. Second, the isotropic
component of monomer self-dynamics in the c.m. frame is
strongly suppressed under flow. Lastly, flow significantly
increases the dynamical heterogeneity of monomer self-
dynamics, as manifested by enhanced long tails of the self-
correlation function. These observations hold true for both
unentangled and entangled polymers, over a broad range of
strain rates, correlation times, and length scales.
Our technical approach comprises three essential ingre-

dients. First, we note that a direct analysis of the self-
intermediate scattering function or self-correlation func-
tion under flow in the laboratory frame is difficult, due to
the position-dependent convection effect [23,24,38,39].
Additionally, simple convection correction protocols based
on a single reference frame [23,25,27,29] (e.g., the “SLLOD
frame” of c.m.) are inadequate for fully addressing the
nonequilibrium dynamics of polymers. To properly decom-
pose the polymer self-dynamics under flow, we introduce
two complementary coordinate systems (Fig. 1) as a gener-
alization of the single reference frame idea. One is the flow
frame, where the c.m. position R̃α

cmðtÞ of a polymer chain α
relative to the flow field (frame) after an elapsed time t is
described by R̃α

cmðtÞ≡Rα
cmðtÞ −

R
t
0 ∇v ·Rα

cmðt0Þdt0, with
Rα
cmðtÞ being the c.m. position in the laboratory frame and

∇v being the average velocity gradient tensor. The other is
the polymer c.m. frame, in which the position R̂α

j ðtÞ of
segment j of chain α relative to the c.m. is R̂α

j ðtÞ≡
Rα

j ðtÞ −Rα
cmðtÞ. The self-intermediate scattering functions

of c.m. motions in the flow frame F̃cmðQ; tÞ and monomer
motions in the polymer c.m. frame F̂monðQ; tÞ are therefore
respectively defined as follows:

F̃cmðQ; tÞ ¼ 1

M

XM
α¼1

hexpf−iQ · ½R̃α
cmðtÞ − R̃α

cmð0Þ�gi; ð1Þ
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F̂monðQ; tÞ ¼ 1

MN

XM
α¼1

XN
j¼1

hexpf−iQ · ½R̂α
j ðtÞ − R̂α

j ð0Þ�gi;

ð2Þ

where M is the number of polymer chains and N the
chain length. For a homogeneous flow ∇v, F̃cmðQ; tÞ, and
F̂monðQ; tÞ provide a complete description of polymer self-
dynamics in the nonequilibrium state. In the real space,
two complementary self-correlation functions G̃cmðr; tÞ
and Ĝmonðr; tÞ can be defined as G̃cmðr; tÞ≡ ð2πÞ−3 ×R
F̃cmðQ; tÞeiQ·rdQ and Ĝmonðr; tÞ≡ ð2πÞ−3 R F̂monðQ; tÞ×

eiQ·rdQ, in the flowand c.m. frames, respectively. It should be
emphasized that thiswork focuses on the self-dynamics under
steady flow (i.e., t ¼ 0 starts from the steady state), as
opposed to transient space-time correlations.
The second major technical ingredient concerns the

quantification of anisotropic self-intermediate scattering
functions F̃cmðQ; tÞ and F̂monðQ; tÞ. To bypass the difficulty
of directly analyzing these quantities in a high-dimensional
space, we employ the spherical harmonic expansion tech-
nique [33–37], which has so far only been applied to
anisotropic static structural correlations, to decompose the
self-intermediate scattering function FsðQ; tÞ:

FsðQ; tÞ ¼
X
l;m

Fl;mðQ; tÞYl;mðθ;ϕÞ; ð3Þ

whereYl;mðθ;ϕÞ is the spherical harmonic function of degree
l and orderm, andFl;mðQ; tÞ is the corresponding expansion
coefficient. Fl;mðQ; tÞ condenses the information of aniso-
tropic space-time correlations and is more amenable to
analysis. Similarly, the self-correlation functions G̃cmðr; tÞ
and Ĝmonðr; tÞ can also be expanded by spherical harmonics,
and the corresponding coefficients Gl;mðr; tÞ can be com-
puted either directly or from the reciprocal space coefficients
using spherical Bessel transform [40].
Lastly, we extend the notion of spatial correlation

analysis of intermediate scattering functions in the equi-
librium state [41] to the nonequilibrium state. Specifically,
the spatial dependence of expansion coefficients Fl;mðQ; tÞ
and Gl;mðr; tÞ are explored at fixed correlation times. This
is generally a more fruitful way of analyzing dynamic
correlation functions than the traditional method of exam-
ining time correlations at constant wave numbers [41].
We apply the aforementioned approach to study the

self-dynamics of polymer melts under steady extensional
flow using NEMD simulations of a coarse-grained bead-
spring model [42,43]. All the beads interact with a purely
repulsive Lennard-Jones potential, and the bonded inter-
actions between neighboring beads along the polymer
chain are described by the FENE potential, UFENE ¼
− 1

2
kR2

0 ln½1 − ðr=R0Þ2�, with R0 ¼ 1.5 and k ¼ 30. The
chain stiffness is controlled by a bond bending potential

UbendðαÞ ¼ kαð1þ cos αÞ, where α is the angle between
two subsequent bonds and kα ¼ 1.5. We consider polymer
melts of four different chain lengths N ¼ 20, 40, 300,
and 500 at density ρ ¼ 0.85 and temperature T ¼ 1. The
equilibrium entanglement length of the model under such
conditions is Ne ≈ 28 [43]. Homogeneous uniaxial exten-
sional flow is imposed by integrating the SLLOD equations
[44] with the generalized Kraynik-Reinelt boundary con-
ditions [45,46]. The flow rate can be measured by the
dimensionless Rouse-Weissenberg number WiR ¼ _ετR,
with the Rouse relaxation time τR ¼ τ0N2 [47]. The self-
dynamics of each system in steady state are examined after
Hencky strain ε ¼ 5. All the simulations were performed
with the GPU-accelerated LAMMPS package [49–51],
and additional details can be found in the Supplemental
Material [52].
To illustrate the basic idea of our technical approach, a

representative result for theN ¼ 300melt is given in Fig. 1.
The leading spherical harmonic expansion coefficients of
the self-intermediate scattering functions defined in the
flow and c.m. frames [Eqs. (1) and (2)] are computed and
presented as 2D color maps. It is worth noting that for the
uniaxial extension symmetry, only the even-degree and

(a)

(b)

(c)

FIG. 1. (a) Illustration of the two reference frames for decom-
posing polymer self-dynamics under flow. (b) Two-dimensional
color maps of the spherical harmonic expansion coefficients
F̃cm
0;0ðQ; tÞ and F̃cm

2;0ðQ; tÞ of the c.m. self-intermediate scattering
function F̃cmðQ; tÞ in the flow frame. The wave number Q is
scaled by the radius of gyration Rg;0 in the equilibrium state.
(c) Coefficients F̂mon

0;0 ðQ; tÞ and F̂mon
2;0 ðQ; tÞ of the monomer self-

intermediate scattering function F̂monðQ; tÞ in the c.m. frame.
The dashed lines indicate cuts of the 2D maps at fixed corre-
lation times. The results given here are based on NEMD
simulations of the N ¼ 300 system under steady extensional
flow of WiR ¼ _ετR ¼ 3, with τR being the Rouse time.
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zero-order terms appear in the spherical harmonic expan-
sion [36]. To further characterize these expansion coeffi-
cients, we perform spatial correlation analysis by focusing
on the Q dependence of Fl;0ðQ; tÞ at constant correlation
times t.
The results for the c.m. self-dynamics in the flow frame

are shown in Fig. 2. Before analyzing the behavior of
F̃cmðQ; tÞ, we first examine the c.m. MSD g̃cm in the flow
frame, which is the second moment of G̃cmðr; tÞ, or
equivalently −∇2

QF̃cmðQ; tÞ at Q ¼ 0 [23]:

g̃cm ¼ 1

M

XM
α¼1

h½Rα
cmðtÞ −Rα

cmð0Þ −
Z

t

0

∇v ·Rα
cmðt0Þdt0�2i:

ð4Þ

Due to the symmetry of uniaxial extensional flow,
g̃cm ¼ P

β g̃
β
cm, where β ¼ x, y, z, and g̃βcm is the MSD

in the direction β. In the long-time limit, g̃cm exhibits
normal diffusive behavior, g̃cm ∼ D̃cmt, where the apparent
c.m. diffusivity D̃cm increases with increasing extension
rate. The relative change of c.m. diffusivity D̃cm=D̃cm;0 is
found to be controlled by the Weissenberg number Wi, and
the data from different chain lengths can be collapsed
onto a master curve [Fig. 2(b)]. While the Rouse model
(with the prediction of D̃cm ∼Wi0) undoubtedly fails to
describe the behavior of the unentangled chains, it is
unclear at this point whether any models for entangled
polymers envision the master curve in Fig. 2(b). On the
other hand, superdiffusive behavior is observed on inter-
mediate timescales: g̃cm ∼ tγ (1 < γ < 2). Most interest-
ingly, the spherical expansion technique allows a detailed
examination of the functional form of F̃cmðQ; tÞ. We find
that the c.m. self-intermediate scattering function in the
flow frame can be described by an anisotropic Gaussian
function:

F̃cmðQ; tÞ ¼ exp

�
−
1

2

X
β

g̃βcmQ2
β

�
: ð5Þ

Equation (5) can be verified by examining the spherical
harmonic expansion coefficients of F̃cmðQ; tÞ. Figures 2(c)
and 2(d), and additional results in the SM [52] confirm that
Eq. (5) is valid for both unentangled and entangled melts,
over a wide range of extension rates, wave numbers, and
correlation times.
These findings point to a critical role of interchain

interactions in polymer melt dynamics—effects that
have not been adequately addressed in current theoretical
models. To qualitatively understand our results, let us
consider a Langevin equation for the c.m. motion of chain
α: ζð _Rα

cm −∇v ·Rα
cmÞ ¼ fα þ fαB, where ζ is the friction

coefficient, fα is the conservative force exerted on chain α
by other chains, and fαB is the stochastic Brownian force. It
is easy to see that in the absence of fα (e.g., the Rouse
model), the self-correlation G̃cmðr; tÞ of c.m. motions in
the flow frame follows an isotropic, diffusive Gaussian
function. Furthermore, we note that the simple convection-
diffusion equation for a single particle under flow yields
superdiffusive, anisotropic Gaussian self-dynamics in the
laboratory frame [22,23,52,63,64], as a result of the
coupling between normal diffusion and convection.
Analyzing the c.m. self-motions in the flow frame removes
the convection contribution ∇v ·Rα

cm. However, an analo-
gous coupling between the displacement due to interchain
forces fα and diffusion should be responsible for the super-
diffusive, anisotropic Gaussian dynamics in the flow frame.
Such a conclusion is further supported by the force analysis
and colloidal simulations presented in the Supplemental
Material [52]. For equilibrium dynamics, the lack of a

(a) (b)

(c)

(d)

FIG. 2. Center-of-mass motions of the N ¼ 20 and N ¼ 300
melts in the flow frame. (a) c.m. mean-squared displace-
ments g̃cmðtÞ relative to the flow field. (b) Relative change of
diffusivity D̃cm=D̃cm;0 with the Weissenberg number Wi. D̃cm;0 is
the diffusivity without flow. Wi≡ _ετchain, with τchain being
the chain relaxation time. The dashed line is a guide for the
eye. The dash-dotted line indicates the prediction of the Rouse
model. (c) Spherical harmonic expansion coefficients F̃cm

0;0ðQ; tÞ
and F̃cm

2;0ðQ; tÞ of the c.m. self-intermediate scattering function
F̃cmðQ; tÞ of the N ¼ 20 system at different correlation times t
and Rouse-Weissenberg numbers WiR. The results of the same
WiR are represented by the same symbol. Furthermore, the data
of the same normalized correlation time WiRt are shown in the
same color. The dashed lines show anisotropic Gaussian fits of
the expansion coefficients according to Eq. (5) with no adjustable
parameters. (d) Results for the N ¼ 300 melts.
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proper treatment of intermolecular forces, particularly the
effective interactions between centers of mass, in the
classical mean-field theories of polymer dynamics [3]
has long been recognized [65,66]. The current observations
speak to the necessity of considering this issue for non-
equilibrium dynamics. Conversely, our technical approach
provides a direct and quantitative way of examining the
effect of interchain forces on the c.m. dynamics in
steady flow.
Having analyzed the c.m. motions in the flow frame,

we now turn our attention to the monomer self-dynamics in
the c.m. frame. Our analysis focuses on the isotropic
components F̂mon

0;0 ðQ; tÞ and Ĝmon
0;0 ðr; tÞ of the self-correla-

tions. Figure 3(a) displays representative 2D color maps of
F̂mon
0;0 ðQ; tÞ of the N ¼ 300 melt. With increasing extension

rate, the contour lines of F̂mon
0;0 ðQ; tÞ systematically shift

towards higher Q, implying a suppression of isotropic
monomer self-dynamics by the flow. To better portray this
trend, the contour lines of F̂mon

0;0 ðQ�; tÞ ¼ e−1 are shown in
Fig. 3(b) for the N ¼ 20 and N ¼ 300 melts at various
extension rates. Q� defines a characteristic length scale
ξðtÞ≡ 1=Q� for the segmental fluctuations within the c.m.
frame at a given correlation time, which is approximately
Rg;0=

ffiffiffi
3

p
for t → ∞ in the quiescent state [3]. It is evident

from Fig. 3(b) that the monomer self-dynamics of both

unentangled and entangled melts are suppressed by flow
over a wide range of correlation times. To further quantify
this effect, we present the limiting characteristic length
scale at long time, ξL ≡ limt→∞ ξðtÞ, as a function of
the Rouse-Weissenberg number WiR and the steady-
state tensile stress σ ≡ σzz − ðσxx þ σyyÞ=2 in Figs. 3(c)
and 3(d), respectively. ξL decreases monotonically with
increasing WiR, and σ and exhibits the asymptotic behavior
of ξL ∼Wi−1=2R and ξL ∼ σ−2=3 at high strain rates.
It is interesting to ask whether changes of polymer

entanglements under flow can be inferred from the mono-
mer self-dynamics in the c.m. frame. The observed sup-
pression of isotropic segmental fluctuations (Fig. 3) is
consistent with the general theoretical expectation of the
reduction of tube diameter under deformation [5,9,10].
Incidentally, the scaling relation ξL ∼ σ−2=3 coincides with
the dependence of tube diameter on tension force predicted
in Ref. [9]. However, the suppression effect revealed by
our analysis is present in both unentangled and entangled
melts, and it involves a broad range of timescales. In other
words, the underlying physics here appears to be more
generic. To understand the origin of the suppressed
fluctuations, we performed Brownian dynamics simula-
tions of both free and constrained Rouse chains [52].
Our calculations show that chain orientation and stretching
is not the direct cause for the fluctuation suppression,
suggesting that the driving force behind this phenomenon is
also intermolecular in nature. Similar to the c.m. self-
dynamics discussed previously, addressing the observed
suppressed monomer self-dynamics under flow requires a
proper treatment of the collective dynamics of polymers.
Lastly, our approach permits a quantitative analysis of

the heterogeneity of polymer self-dynamics, which in the
equilibrium state manifests as a long tail in the self-
correlation function [67]. Figure 4 compares the isotropic
component Ĝmon

0;0 ðr; tÞ of the c.m. frame self-correlation
function Ĝmonðr; tÞ of the N ¼ 300 melt at equilibrium and
WiR ¼ 10. In both cases, the tail of the spatial correla-
tion deviates from the Gaussian distribution and displays
an exponential-like long tail at large r: Ĝmon

0;0 ðr;tÞ∼
exp½−r=λðtÞ�. The presence of flow significantly prolongs
the tail of the distribution, leading to enhanced dynamical
heterogeneity. The changes of λðtÞ of the N ¼ 20 and N ¼
300 melts under flow are shown in Figs. 4(c) and 4(d)
(additional results forN ¼ 40 andN ¼ 500 can be found in
the Supplemental Material [52]). While the flow increases
the heterogeneity of self-dynamics in both cases, the effect
is much more pronounced for the entangled system
(N ¼ 300). At this point, we are unaware of any theoretical
models that qualitatively capture the behavior depicted in
Figs. 4(c) and 4(d). Nevertheless, the physical origin of
the observed heterogeneity enhancement can be intuitively
appreciated: for entangled polymers λðtÞ can be interpreted
as a characteristic dynamic length scale associated with the

(a)

(b)

(c) (d)

FIG. 3. Monomermotions in the c.m. frame. (a)Two-dimensional
color maps of the isotropic expansion coefficient F̂mon

0;0 ðQ; tÞ of the
self-intermediate scattering function F̂monðQ; tÞ at equilibrium,
WiR ¼ 0.3, and WiR ¼ 30. The dashed lines are contour lines of
F̂mon
0;0 ðQ�; tÞ ¼ e−1. (b) Characteristic wave number Q�Rg;0 at

various Rouse-Weissenberg numbers for the N ¼ 20 and N ¼
300 melts. (c) Rate dependence of the characteristic length scale in
the long-time limit ξL. (d) Dependence of ξL on the steady-state
tensile stress σ.
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distribution of entanglements along the chain [68]. It
follows that λ should increase under flow, as a result of
disentanglements, and approach the size of the polymer
chain at high strain rates (Fig. 4).
In summary, we propose a framework for the quanti-

tative analysis of polymer self-dynamics under flow,
which overcomes the inherent difficulties encountered
in the previous attempts [23,25,27,29]. Our method is
based on the use of two complementary observation
frames and an extension of the spherical harmonic
expansion technique to dynamic density correlations. It
permits a direct examination of the microscopic dynamics
of polymers in steady flow via well-defined space-time
correlation functions, without recourse to ad hoc algo-
rithms. Application of this approach to NEMD simula-
tions of coarse-grained polymer melts reveals a number of
universal features. Lastly, our method is not limited to
self-dynamics under uniaxial extension, and should be
useful for analysis of shear flows and nonequilibrium
single-chain collective dynamics as well.
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