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We present a theory on the quantum phase diagram of AB-stacked MoTe2=WSe2 using a self-consistent
Hartree-Fock calculation performed in the plane-wave basis, motivated by the observation of topological
states in this system. At filling factor ν ¼ 2 (two holes per moiré unit cell), Coulomb interaction can
stabilize a Z2 topological insulator by opening a charge gap. At ν ¼ 1, the interaction induces three classes
of competing states, spin density wave states, an in-plane ferromagnetic state, and a valley polarized state,
which undergo first-order phase transitions tuned by an out-of-plane displacement field. The valley
polarized state becomes a Chern insulator for certain displacement fields. Moreover, we predict a
topological charge density wave forming a honeycomb lattice with ferromagnetism at ν ¼ 2=3. Future
directions on this versatile system hosting a rich set of quantum phases are discussed.
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Introduction.—Topological phases of matter have been
among the most active and important research areas in
condensed matter physics ever since the experimental
discovery of the quantum Hall effect [1] in the presence
of strong magnetic fields. The mechanism of the quantum
Hall effect, especially the quantization of Hall conductance,
has been understood in terms of the topological invariant of
the Chern number [2,3]. The concept of quantum Hall
insulators has been generalized to quantum anomalous Hall
insulators (also known as Chern insulators) [4] and quan-
tum spin Hall insulators (also known as Z2 topological
insulators) [5], where the former exhibits quantized Hall
effect without the external magnetic field, and the latter is
the topological state in the presence of time-reversal
symmetry. Among the extensive topological theoretical
predictions [6–20], only a limited number of systems have
so far been studied experimentally manifesting unambigu-
ous topological invariants: Chern insulators have been
realized in magnetically doped topological insulator thin
films [21,22], few-layer MnBi2Te4 [23,24], and graphene-
based moiré materials [25–29], and transport signatures of
the quantum spin Hall effect have been reported in HgTe
quantum wells [30], InAs=GaSb quantum wells [31,32],
and monolayer WTe2 [33,34].
The recent advent of moiré materials, followed by the

discovery of correlated insulators and superconductors in
magic-angle twisted bilayer graphene [35,36], provides
vast new opportunities to design different phases of matter,
including the topological phases discussed above [25–
27,37–47]. It was theoretically proposed [48] that
moiré bands in twisted transition metal dichalcogenide

homobilayers can be mapped to the Kane-Mele model [48–
50]. Coulomb repulsion can further drive broken symmetry
insulating states (e.g., Chern insulators) because the topo-
logical moiré bands have narrow bandwidth. This leads to
interesting physics involving the interplay between band
topology and strong correlations. A recent experiment on
AB-stacked MoTe2=WSe2 [51] reported well-developed
quantum anomalous Hall effect at filling factor ν ¼ 1 and
possible evidence for quantum spin Hall effect at ν ¼ 2.
This experiment is unprecedented, as it demonstrates
experimentally that quantum anomalous Hall and quantum
spin Hall effects could be realized in a single system,
something that has never happened before as the two
phenomena are quite distinct. It is also surprising, as it
utilizes a heterobilayer instead of the homobilayer proposed
in Ref. [48] for the manifestation of transition metal
dichalcogenides (TMD) topology. The surprising rich
phenomena observed in MoTe2=WSe2 calls for detailed
theoretical studies [52–54].
In this Letter, we present a topological theoretical study

of interacting AB-stacked MoTe2=WSe2. The single-
particle physics is described by a continuum moiré
Hamiltonian that incorporates the topmost valence bands
from both layers. An out-of-plane displacement field tunes
the band offset between the two layers, and drives a
topological phase transition for the first moiré valence
band. The Coulomb interaction is treated using a self-
consistent Hartree-Fock approximation without the bias of
projecting it to a few selected moiré bands. Our main results
are summarized as follows. (1) At ν ¼ 2, the single-particle
band structure predicts a metallic state in the topological
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regime, but the Coulomb interaction can open up a gap,
and therefore, stabilize the Z2 topological insulator. (2) At
ν ¼ 1, we obtain a rich quantum phase diagram that
includes three classes of competing phases, spin density
wave states, an in-plane ferromagnetic state, and a valley
polarized state. The valley polarized state becomes a Chern
insulator for a certain range of displacement fields. (3) At
the fractional filling factor ν ¼ 2=3, we predict a topologi-
cal density wave state, and identify the condition for its
experimental realization.
Our results provide a consistent mean-field description

of the experimental observations (along with new predic-
tions) in Ref. [51], which is an important step toward a full
understanding of quantum phases in the moiré TMD
physics. In a broader perspective, our Letter establishes
affirmatively that the interplay between many-body inter-
action and single-particle band topology can induce a rich
set of distinct topological phases (e.g., quantum anomalous
Hall insulators and quantum spin Hall insulators) within
one realistic system.
Model.—We focus on AB-stacked MoTe2=WSe2 with

an exact 180° twist angle. The moiré superlattices have the
C3v point group symmetry and a moiré period aM ¼
abat=jab − atj, where ðab; atÞ ¼ ð3.575 Å; 3.32 ÅÞ are
the lattice constant of MoTe2 and WSe2, respectively.
The large lattice constant mismatch makes the moiré
superlattices relatively immune to twist angle disorder.

As shown in Fig. 1(a), there are three high-symmetry
regions in one moiré unit cell, labeled as MM, XX, and
MX, corresponding to local atomic configurations with C3z
(threefold rotational) symmetry.
The density functional theory calculation [51,53] of

AB-stacked MoTe2=WSe2 shows that states at the valence
band edge originate from �K valley of MoTe2, where �K
refer to corners of the monolayer Brillouin zone. Therefore,
we focus on �K valleys which are related by the T
symmetry. For valence bands at the two valleys, there are
large spin splittings that are both valley and layer depen-
dent, as illustrated in Fig. 1(b). By retaining the topmost
valence bands from each layer, we construct [48,49,53] a
valley-dependent continuum Hamiltonian as follows:

Hτ ¼
 
− ℏ2k2

2mb
þ ΔbðrÞ ΔT;τðrÞ

Δ†
T;τðrÞ − ℏ2ðk−τκÞ2

2mt
þ ΔtðrÞ þ Vzt

!
; ð1Þ

where τ ¼ �1 represents �K valleys, and κ ¼
ð4π=3aMÞð1; 0Þ is at a corner of the moiré Brillouin zone.
For each valley, the 2 × 2 Hamiltonian hybridizes the
bottom layer (b) and top layer (t), where the off diagonal
terms describe the interlayer tunneling ΔT;τ, and the dia-
gonal terms describe the momentum-shifted kinetic energy
with the effective mass ðmb; mtÞ ¼ ð0.65; 0.35Þme (me is
the rest electron mass), plus the intralayer potential Δb=t,
and a band offset Vzt [Fig. 1(b)]. OurHτ differs from that in
Ref. [53] by a gauge transformation.
The periodic potential ΔbðrÞ is parametrized as

ΔbðrÞ ¼ 2Vb

X
j¼1;3;5

cosðgj · rþ ψbÞ; ð2Þ

where Vb and ψb respectively characterize the ampli-
tude and spatial pattern of the potential, and gj ¼
ð4π= ffiffiffi

3
p

aMÞf− sin½πðj − 1Þ=3�; cos½πðj − 1Þ=3�g are the
moiré reciprocal lattice vectors in the first shell. We set
ΔtðrÞ ¼ 0, since the low-energy physics only involves the
band maximum of WSe2 [53]. The interlayer tunneling
term is

ΔT;τðrÞ ¼ τwð1þ ωτeiτg2·r þ ω2τeiτg3·rÞ; ð3Þ

where w describes the tunneling strength, and ω ¼ eið2π=3Þ
following the C3z symmetry [53]. The valley dependence
of ΔT;τ is constrained by T symmetry. Here ΔT;τ couples
states with opposite spins, which is symmetry allowed
because the heterobilayer breaks the z → −z mirror sym-
metry. For parameters in Hτ, we take ψb ¼ −14° such that
the potential maximum of ΔbðrÞ is at the MM site [53]; Vzt
is a parameter that is experimentally controllable by an
applied out-of-plane displacement field; Vb and w are taken
as theoretical parameters that can be adjusted to study

(a) (b)

(c) (d)

FIG. 1. (a) Moiré superlattice of AB-stacked MoTe2=WSe2.
(b) A schematic plot for band alignment in the heterobilayer.
Only states in the dashed box are retained in the Hamiltonian Hτ.
(c) Single-particle moiré band structure with parameters
ðw; Vb; VztÞ ¼ ð12 meV; 7 meV;−20 meVÞ. Orange (blue) lines
show þKð−KÞ-valley moiré bands. The dashed line shows the
Fermi energy of the charge neutrality. The first moiré valence
band from �K valleys carry �1 Chern number. (See the
Supplemental Material [55] for the definition of high-symmetry
points in the moiré Brillouin zone.) (d) Single-particle topological
phase diagram of the first moiré valence band as a function of w
and Vzt with Vb ¼ 7 meV.
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different phases. We note that the interlayer tunneling
strength w can be modified by pressure.
The low-energy moiré bands and their topology are

tunable by Vzt. For the intrinsic band offset Vzt that has a
large negative value (∼ − 110 meV) [53], the topmost
moiré valence band at each valley mainly derives from
the MoTe2 layer and can be described by a tight-binding
model on a triangular lattice, which is topologically trivial.
By reducing jVztj with an external displacement field, the
energy gap between the topmost moiré valence bands
derived respectively from MoTe2 and WSe2 can close
and then reopen. This band inversion enabled by the
tunneling term ΔT;τ can lead to topological phase transi-
tions. Figure 1(d) presents a topological phase diagram
characterized by the valley-contrast Chern numbers C�K of
the first moiré valence band in the parameter space of
ðVzt; wÞ. For Vzt above the critical value, C�K become
nontrivial (�1). Figure 1(c) plots a representative moiré
band structure in the topologically nontrivial regime of
Fig. 1(d). Note that there is no overall energy gap that
separates the first and second moiré valence bands in
Fig. 1(c). The effect of many-body interaction on this gap is
crucial as studied in the following.
Coulomb interactions.—The bandwidth of the first moiré

valence band is on the order of ℏ2κ2=ð2mbÞ ≈ 47 meV,
while the characteristic Coulomb interaction strength is on
the order of e2=ðϵaMÞ ≈ 31 meV for aM ≈ 4.7 nm and
dielectric constant ϵ ¼ 10. Therefore, the Coulomb inter-
action has an energy scale comparable to the bandwidth
[Fig. 1(c)], which puts the system in the strongly interacting
regime with possible interaction-induced quantum phase
transitions. We consider the dual-gate screened Coulomb
interaction with the momentum-dependent potential
VðqÞ ¼ 2πe2 tanhðqdÞ=ðϵqÞ, where d is the gate-to-sample
distance. We set d ¼ 5 nm [51] unless otherwise stated.
The dielectric constant ϵ is of the order of 10–20, and we
vary ϵ to illustrate how physical properties depend on the
interaction strength.
We treat the Coulomb interaction using a self-consistent

Hartree-Fock (HF) approximation applied to the continuum
Hamiltonian in the plane-wave basis (see the Supplemental
Material [55] for details). Here, we do not project the
Coulomb interaction onto a few low-energy moiré bands,
because it is generally not possible to identify a set of bands
that are energetically isolated from other bands [Fig. 1(c)].
Our approach allows us to study interaction effects for
different parameter regimes in a unified manner. We note
that HF theory, although qualitatively reliable, may over-
estimate the tendency toward ordering, and may not be able
to quantitatively capture the global phase diagram.
Nevertheless, it is an important and nontrivial question
of principle whether the experimental observations can be
captured by a mean-field theory.
Z2 topological insulator at ν ¼ 2.—For the single-

particle band structure shown in Fig. 1(c), ν ¼ 2 would

correspond to a metallic state since there is no overall gap
that separates the first and second moiré valence bands.
However, after performing the self-consistent HF calcu-
lations using the same set of parameters, we find that a true
gap develops at ν ¼ 2, as shown in Fig. 2(a). The first
moiré valence band at each valley remains topologically
nontrivial. Therefore, the ν ¼ 2 insulator in Fig. 2(a)
belongs to the Z2 time-reversal invariant topological
insulator as the Z2 topological invariant, defined in our
case by mod ½ðCþK − C−KÞ=2; 2� [5], is nontrivial given
C�K ¼ �1. This can be viewed as a realization of the
interaction-induced quantum spin Hall insulator [5].
For generic parameter values, we present the topological

phase diagram at ν ¼ 2 calculated using the HF approxi-
mation as a function of ϵ and Vzt in Fig. 2(b), where there
are two phases, the topologically trivial phase and the Z2

topological insulator phase, respectively, for Vzt below
and above a critical value. At the critical Vzt, the charge
gap vanishes. The critical Vzt increases as ϵ decreases
(Coulomb interaction increases) because a stronger
Coulomb interaction opens a larger charge gap in the
topologically trivial phase, which requires a larger dis-
placement field to close the gap so that the topological
phase transition can happen.
Competing phases at ν ¼ 1.—We study interaction-

induced competing phases at ν ¼ 1 and show the quantum
phase diagram in Fig. 3(a), which includes three distinct
classes of states, a valley polarized (VP) state, spin density
wave (SDW) states, and an in-plane ferromagnetic state
(FMx). We first describe the VP state, where the first moiré
valence bands at �K valleys have unequal occupations.
Therefore, the VP state carries a finite out-of-plane
spin polarization and spontaneously breaks T symmetry.
Figure 3(f) shows a representative band structure calculated
using the HF method for the VP state, which has a finite
charge gap at ν ¼ 1 and realizes a Chern insulator (CHI)

(a) (b)

FIG. 2. (a) Band structure from the HF calculation at ν ¼ 2with
the same parameters as Fig. 1(c). Orange (blue) lines show
þKð−KÞ-valley moiré bands. The two horizontal dashed lines
identify the charge gap at ν ¼ 2. Here ϵ ¼ 15. (b) Charge gap at
ν ¼ 2 from the HF calculation as a function of Vzt and ϵ. The gap
vanishes at the dashed line, which separates phase I (topologi-
cally trivial insulators) and phase II (Z2 topological insulators).
Here w ¼ 12 meV and Vb ¼ 7 meV.
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with a quantized Chern number 1. This gives rise to the
VP-CHI phase in Fig. 3(a). The VP state may become
topologically trivial for a large negative Vzt. However, such
a VP trivial phase is absent in Fig. 3(a) because it is
energetically unfavorable compared with SDW states for
the parameter ranges used in this figure. To the other
extreme (Vzt ∼ 0), the VP state may become a metallic state
that has partial valley polarization, though not energetically
favorable compared with FMx in Fig. 3(a).
We now turn to SDW and FMx phases. The first moiré

valence band in the topologically trivial regime of Fig. 1(d)
can be described by a single-band tight-binding model on a
triangular lattice, which, combined with the Coulomb
interaction, realizes a generalized Hubbard model [59].
The single-band Hubbard model on a triangular lattice in
the strong interaction limit has the 120° antiferromagnetic
Néel ground state [59,60] at ν ¼ 1, which spontaneously
breaks the valley U(1) symmetry in our case and therefore,
represents an intervalley-coherent state. The SDW in the
120° Néel state spontaneously breaks the moiré transla-
tional symmetry, and has an expanded unit cell with a
period of

ffiffiffi
3

p
aM. In Figs. 3(b)–3(d), we show three types of

SDW states, distinguished by their charge and spin patterns
in the bottom layer. In SDW1 and SDW2, the holes in the
bottom layer are mainly concentrated on MM sites. Both
SDW1 and SDW2 have the 120° antiferromagnetic spin
texture for holes on MM sites, but they differ by the spin
vector chirality [49]. In SDW3, the holes in the bottom layer
are redistributed in moiré superlattices such that the hole
density on MM and XX sites have comparable magnitude;
the corresponding spin texture is shown in Fig. 3(d). In
addition, we also consider an FMx state (also an intervalley
coherent state), where the spin for holes in the bottom is
polarized along an in-plane direction. We perform a self-
consistent HF calculation for the SDW and FMx states,
compare their energies with the VP state, and obtain the
phase diagram in Fig. 3(a) as a function of Vzt and ϵ.
In Fig. 3(e), we show the charge gap as a function of Vzt

at a fixed ϵ. As Vzt increases from a large negative value
toward 0, there is a first-order phase transition between the
topologically trivial SDW phase and the topological VP
CHI phase. Because the first-order phase transition breaks
adiabatic continuity, the charge gap does not need to vanish
at the transition point, and there can be a discontinuous
jump in the gap. In contrast, the experimental charge gap
[51] evolves continuously across the transition from a Mott
insulator to a Chern insulator at ν ¼ 1, which could be due
to disorder effects [61].
Topological charge density waves at ν ¼ 2=3.—

Correlated insulators can develop not only at integer ν,
but also at fractional ν, as demonstrated experimentally in
Refs. [62–66]. Here we focus on ν ¼ 2=3, where the
Coulomb interaction can induce a charge density wave
(CDW) state that forms a honeycomb lattice [67]. The
enlarged unit cell has a period

ffiffiffi
3

p
aM and contains three

MM sites, but only two out of the three are occupied by
holes in the bottom layer, which, therefore, leads to an
effective honeycomb lattice. We theoretically find that the
CDW state at ν ¼ 2=3 is sensitive to the long-range part of
the Coulomb interaction, and can be energetically stabi-
lized for d ¼ 15 nm rather than d ¼ 5 nm, where d is the
sample-to-gate distance and controls the effective range of
the Coulomb interaction.
On the effective honeycomb lattice, there can be two

types of spin ordering [67]: (1) antiferromagnetic (AFz)
order and (2) ferromagnetic (FMz) order, where the spin
polarization axis is out of the plane for both cases as
illustrated respectively in Figs. 4(b) and 4(c). Here the FMz
state is also valley polarized. We perform self-consistent
HF calculations respectively for the AFz honeycomb
(AFz-HC) state and the FMz honeycomb (FMz-HC) state.
Their energy competition gives rise to the ν ¼ 2=3 phase
diagram in Fig. 4(a), where the AFz-HC and FMz-HC states
are favorable respectively for Vzt below and above a critical
value. Remarkably, when the FMz-HC state becomes
energetically favorable, it is also topologically nontrivial
with a quantized Chern number 1. Therefore, there can be a

(a) (b)

(c)

(d)

(e) (f)

FIG. 3. (a) Interaction-induced phase diagram at ν ¼ 1 as a
function of Vzt and ϵ. (b)–(d) Spin textures in the bottom layer for
the three SDW states. The green, orange and red dots mark MM,
XX and MX sites, respectively, where their sizes indicate the
corresponding charge densities. (e) Charge gap at ν ¼ 1 as a
function of Vzt with ϵ ¼ 15, w ¼ 12 meV, and Vb ¼ 7 meV.
(f) Band structure of ν ¼ 1 VP CHI calculated using the HF
method at ϵ ¼ 15 and Vzt ¼ −10 meV. Orange (blue) lines show
þKð−KÞ-valley moiré bands. The two horizontal dashed lines
identify the charge gap at ν ¼ 1.
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topological CDW state at ν ¼ 2=3. Here the topology
emerges with a mechanism similar to that of the VP
CHI state at ν ¼ 1, i.e., band inversion induced by Vzt.
Conclusion.—Our self-consistent theoretical results pro-

vide a reasonable qualitative understanding of the field-
induced topological states in Ref. [51]. The theory sets up a
general framework to study topological interaction effects
in a transition metal dichalcogenide based moiré system,
and can be readily applied to study a variety of interaction-
induced symmetry breaking phases [49,62,67–72]. For
AB-stacked MoTe2=WSe2, many future directions can
be explored in both theory and experiment. The ν ¼ 1
Chern insulator has spontaneous VP, but does not break any
continuous symmetry. It is an Ising-type ordering with a
finite Curie temperature, which could be theoretically
estimated by studying the valley magnon and domain
fluctuations [73]. This VP state can result in interesting
optical phenomena, for example, Faraday and Kerr rota-
tions [74]. The multiple distinct quantum phases (SDW,
CHI, and Z2 topological insulators) that emerge in a single
system can be used as building blocks to design new
quantum phases on demand. For example, by introducing
proximitized superconductivity, an interface between the
ν ¼ 1 SDW state and the ν ¼ 2 Z2 topological insulator
could host Majorana zero modes.
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(London) 587, 214 (2020).

[63] H. Li, S. Li, E. C. Regan, D. Wang, W. Zhao, S. Kahn, K.
Yumigeta, M. Blei, T. Taniguchi, K. Watanabe, S. Tongay,
A. Zettl, M. F. Crommie, and F. Wang, Imaging two-
dimensional generalized Wigner crystals, Nature (London)
597, 650 (2021).

[64] E. Liu, T. Taniguchi, K. Watanabe, N. M. Gabor, Y.-T. Cui,
and C. H. Lui, Excitonic and Valleytronic Signatures of
Correlated States at Fractional Fillings of a Moiré Super-
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