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We consider an S ¼ 1=2 antiferromagnetic quantum Heisenberg chain where each site is coupled to an
independent bosonic bath with ohmic dissipation. The coupling to the bath preserves the global SO(3) spin
symmetry. Using large-scale, approximation-free quantum Monte Carlo simulations, we show that any
finite coupling to the bath suffices to stabilize long-range antiferromagnetic order. This is in stark contrast
to the isolated Heisenberg chain where spontaneous breaking of the SO(3) symmetry is forbidden by the
Mermin-Wagner theorem. A linear spin-wave theory analysis confirms that the memory of the bath and the
concomitant retarded interaction stabilize the order. For the Heisenberg chain, the ohmic bath is a marginal
perturbation so that exponentially large system sizes are required to observe long-range order at small
couplings. Below this length scale, our numerics is dominated by a crossover regime where spin
correlations show different power-law behaviors in space and time. We discuss the experimental relevance
of this crossover phenomena.
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Introduction.—Real quantum systems are seldom iso-
lated [1,2]. The natural question to ask is if the coupling to
the environment will trigger new phenomena, and, if so, at
which energy- or timescale. This question is not only
relevant in the realm of quantum simulation or computing
where decoherence is a limiting factor [3], but also in the
solid state. A prominent example for this are experiments
on KCuF3 [4], a quasi-one-dimensional material with weak
interchain coupling. In this material, surrounding chains
can be viewed as a weakly coupled environment modifying
the behavior of the chain: At high energies, neutron-
scattering experiments are remarkably well reproduced
by the two-spinon continuum of the isolated Heisenberg
model; at low energies, the environment dominates, leading
to the binding of spinons into spin waves.
One of our motivations is to understand the physics of

chains of magnetic adatoms deposited on a metallic
substrate [5]. Starting from an effective description of
the magnetic adatoms in terms of a one-dimensional S ¼
1=2 Heisenberg chain with a Kondo-type coupling to the
substrate [6–8], one can use Hertz-Millis theory [9,10] to
integrate out the bath and obtain in second-order perturba-
tion theory a retarded interaction in space and time between

the spin degrees of freedom. This interaction is governed by
the spin susceptibility of the two-dimensional electron gas,
χ0ði − j; τ − τ0Þ, where i and j denote the positions of the
magnetic adatoms and τ, τ0 are points in imaginary time; it
has a different decay in space (quartic) and time (quadratic).
In our modeling, we will neglect the spatial decay since it is
irrelevant at the Heisenberg critical point [11] and focus on
the effect of retardation of the interaction in (imaginary)
time [14–18]. This allows us to simplify the model further
and instead of a metallic substrate we introduce indepen-
dent ohmic baths described by noninteracting bosons as in
the celebrated Caldeira-Leggett model [19], leading to the
same retarded interaction in time if the bath is integrated
out.
Spin chains in the presence of dissipation have been

considered in the absence of the Berry phase within an ϵ
expansion [20] as well as with classical Monte Carlo
methods [21]. Simulations were based on a lattice discre-
tization of the nonlinear sigma model [21], but without the
topological θ term that is relevant for half-integer spin
chains and renders them critical [22]. In the absence of the
Berry phase, these spin models account for massive phases,
so that a finite coupling to the bath is required to trigger a
phase transition from a disordered phase at weak coupling
to an ordered phase at strong coupling. This breakdown of
the Mermin-Wagner theorem [23,24] stems from the fact
that the ohmic bath induces long-ranged retarded inter-
actions. Calculations for the quantum XXZ chain with site
ohmic dissipation coupling to the z component of the spin
were carried out in Ref. [25].
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In this Letter, we focus on the SO(3)-symmetric quantum
Heisenberg chain with spin-symmetric coupling to the
ohmic baths. In contrast to previous work [21], we directly
solve the S ¼ 1=2 quantum spin problem; this automati-
cally takes into account the Berry phase so that the isolated
spin chain becomes critical. The recently introduced
wormhole algorithm [26] permits positive-sign quantum
Monte Carlo simulations for very large system sizes, which
allows us to systematically study the approach toward the
thermodynamic limit. We find that the coupling to the
ohmic bath is marginal and that any coupling strength
modifies the low-energy physics of the S ¼ 1=2 chain,
stabilizing long-range antiferromagnetic order. Our results
reveal a nontrivial finite length scale, separating suppressed
correlations at short distances from the emergence of order
at long distances. We expect that this length scale is
observable in experiments for finite spin chains.
Model.—We consider the one-dimensional S ¼ 1=2

antiferromagnetic Heisenberg model

Ĥs ¼ J
X

i

Ŝi · Ŝiþ1; ð1Þ

where we use the exchange coupling J ¼ 1 as the unit of
energy. Its ground state shows critical antiferromagnetic
correlations given for long distances by CðrÞ ¼ hŜz0Ŝzri ∝
ð−1Þrðln rÞ1=2r−1, where the power law is tied to the global
SO(3) spin symmetry [27].
To study the effects of dissipation on the Heisenberg

chain, we introduce an independent bosonic bath coupled
to each spin component Ŝαi . The total Hamiltonian is given
by Ĥ ¼ Ĥs þ Ĥsb, with

Ĥsb ¼
X

iq

ωq â
†
iq · âiq þ

X

iq

λqðâ†iq þ âiqÞ · Ŝi: ð2Þ

Here, â†iq, âiq are three-component vectors of bosonic
creation and annihilation operators. The bath consists of
a continuum of modes q with frequency ωq and spin-boson
coupling λq. Our model satisfies the global SO(3) rotational
symmetry generated by the total angular momentum Ĵtot ¼P

iq Q̂iq × P̂iq þ
P

i Ŝi, where Q̂iq ¼ ð1= ffiffiffi
2

p Þðâ†iq þ âiqÞ
and P̂iq ¼ ði= ffiffiffi

2
p Þðâ†iq − âiqÞ are the bosonic position

and momentum operators, respectively. The effects of
the bath on the spin system are fully determined by the
spectral density JðωÞ ¼ π

P
q λ

2
qδðω − ωqÞ. An ohmic bath

corresponds to a power-law spectrum

JðωÞ ¼ 2παJ1−sωs; 0 < ω < ωc; ð3Þ

with exponent s ¼ 1 [1]. Here, we introduced the dimen-
sionless coupling constant α and the frequency cutoff ωc.
The bath can be integrated out exactly and the partition

function Z ¼ ZbTrsT̂τ e−Ĥ is fully determined by the spin

subsystem Ĥ ¼ Ĥs þ Ĥret. The spin-boson coupling in
Eq. (2) leads to a retarded spin-spin interaction

Ĥret ¼ −
ZZ

β

0

dτdτ0
X

i

Kðτ − τ0Þ ŜiðτÞ · Ŝiðτ0Þ; ð4Þ

which encodes the memory of the bath. It is mediated by
the bath propagator

KðτÞ ¼
Z

ωc

0

dω
JðωÞ
π

cosh½ωðβ=2 − τÞ�
2 sinh½ωβ=2� ; ð5Þ

where 0 ≤ τ < β and Kðτ þ βÞ ¼ KðτÞ. Here, β ¼ 1=T is
the inverse temperature. The power-law spectrum in Eq. (3)
yields KðτÞ ∼ 1=τ1þs for ωcτ ≫ 1.
The retarded interaction can invalidate the Mermin-

Wagner theorem and produce long-range order even in
one spatial dimension. In the Supplemental Material [28],
we provide a linear spin-wave theory analysis of our model,
which shows that at large S spin waves do not destabilize
antiferromagnetic long-range order in the presence of
dissipation. Further insight comes from considering the
isolated spin chain, and, at this critical point, computing the
scaling dimension of the retarded interaction. One obtains
Δ ¼ 1 − s such that the ohmic case, s ¼ 1, is marginal
[12,13]. The goal here is to investigate numerically if the
coupling is marginally relevant or irrelevant.
Method.—For our simulations, we used an exact quan-

tum Monte Carlo method for retarded interactions [29] that
samples a diagrammatic expansion of Z=Zb in Ĥs þ Ĥret.
Our approach is based on the stochastic series expansion
[30] with global directed-loop updates [31] and makes use
of efficient wormhole moves [26] recently developed for
retarded spin-flip interactions as in Eq. (4). The time
dependence of Kðτ − τ0Þ only enters during the diagonal
updates and is sampled exactly using inverse transform
sampling [26]; we set ωc=J ¼ 10, similar to Ref. [25]. At
α ¼ 0, Lorentz invariance guarantees convergence to the
ground state at inverse temperatures β ∝ L. This is no
longer true for α > 0, so that we ensure convergence in
temperature for all results, as demonstrated in the
Supplemental Material [28]. For the largest system sizes
we reach βJ ≈ 10;000, and we use periodic boundary
conditions. For a detailed description of our method
see Ref. [26].
Results.—To probe for long-range order, we compute the

equal-time spin structure factor defined as

SðqÞ ¼ 1

L

X

ij

eiqði−jÞhŜzi Ŝzji: ð6Þ

Owing to the spin-rotational symmetry of our model, it is
sufficient to consider only the z component of the spin.
We also calculate the correlation ratio [32,33],
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R ¼ 1 −
SðQþ δqÞ

SðQÞ ; ð7Þ

at the ordering momentum Q ¼ π and with resolution
δq ¼ 2π=L, as it is particularly useful to detect quantum
phase transitions. R captures ðξ=LÞ2 where ξ is the
correlation length [34]. It scales to unity (zero) in the
ordered (disordered) phase and corresponds to a renorm-
alization-group-invariant quantity at criticality. Figure 1(a)
shows temperature-converged results of R for each chain
length L and coupling strength α. For large values of α, the
correlation ratio grows, thus lending support to long-range
antiferromagnetic order as suggested by linear spin-wave
theory [28]. To understand the limit of strong bath cou-
pling α, we consider J ¼ 0 in Eq. (1). In this case, Ĵi;tot ¼P

q Q̂iq × P̂iq þ Ŝi is a good quantum number such that the
ground state for each site, consisting of a spin and the bath,
has a half-integer angular momentum and is hence at least
twofold degenerate, i.e., the bath cannot screen the spin
degree of freedom. This leads to a macroscopic degeneracy,
which is lifted at finite J by the onset of long-ranged order,
as shown in Fig. 1(a).

We now turn our attention to the weak-coupling limit.
Considering pairs of chain lengths, we observe that the
crossing of Rðα; LÞ and Rðα; 2L − 2Þ at αcðLÞ systemati-
cally drifts to lower values of α. As apparent from the inset
of Fig. 1(a) and for our considered lattice sizes, αcðLÞ≃
1= lnðLÞ. Figure 1(b) shows the correlation ratio R at fixed
coupling α and as a function of lattice size, revealing a
characteristic length scale Lc at which R shows a minimum.
The α dependence of Lc, shown in Fig. 1(c), is consistent
with an exponential law, LcðαÞ ∝ eζ=α, suggesting that the
coupling to the ohmic bath is marginally relevant. As a
consequence, exponentially large lattices are required to
observe ordering in the regime of small α.
The length scale Lc, beyond which the correlation ratio R

grows, is revealed by the real-space correlations CðrÞ
shown in Fig. 2. At α ¼ 0.1, this length scale lies beyond
the lattice sizes accessible in our simulations, and CðrÞ is,
up to an overall scaling factor, not distinguishable from the
correlations in the Heisenberg model. We interpret the
renormalization of the short-ranged spin-spin correlations
in terms of entanglement between bath and spin degrees of
freedom. At α ¼ 0.25, the correlation ratio grows for
L≳ 82, as can be seen in Fig. 1(b). The length scale Lc
marks a distinct departure from the Heisenberg scaling
and a leveling off of the spin-spin correlations in Fig. 2.
Ultimately for α ≥ 1, Lc drops below our smallest system
size, the Heisenberg scaling is not apparent any more, and
the data clearly support long-ranged order. We also note
that while initially decreasing, the magnitude of the short-
ranged spin-spin correlations grows for large values of α.
Figure 3 displays the spin structure factor SðqÞ as well as

the square of the antiferromagnetic order parameter,

m2ðLÞ ¼ 1

L
Sðq ¼ πÞ: ð8Þ

(a)

(b) (c)

FIG. 1. (a) Antiferromagnetic correlation ratio R as a function
of the spin-boson coupling α for different system sizes L. A
finite-size scaling of the crossings αcðLÞ between data pairs
fL; 2L − 2g is shown as an inset. (b) Rð1=LÞ for different α.
The minima of Rð1=LÞ define a crossover scale LcðαÞ beyond
which R increases. Lc is estimated using spline fits and is
shown in (c). The crossover scale is consistent with an
exponential scaling Lc ∝ expðζ=αÞ.

FIG. 2. Real-space correlation function CðrÞ for even r at
the largest available L ∈ f82; 162; 322; 642g for different α.
For α ¼ 0, the exact asymptotic form (dashed line), CðrÞ∼
ð−1Þrðln rÞ1=2=½ð2πÞ3=2r�, is approached very slowly [27]. A
finite-size analysis of the boundary effects near r ¼ L=2 can
be found in the Supplemental Material [28].
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In the absence of the bath, Sðq ¼ πÞ diverges logarithmi-
cally [Fig. 3(a)] so that m2ðL → ∞Þ vanishes [Fig. 3(c)].
For large bath couplings α, we observe a finite order
parameterm2ðL → ∞Þ > 0 in Fig. 3(c), in accordance with
our analysis of the correlation ratio. At small α, distinguish-
ing m2ðL → ∞Þ from zero becomes challenging. In this
limit, the data of Fig. 2 show that the spin-spin correlations
decay as 1=r for r < Lc before leveling off. Hence, we
conjecture that limL→∞m2ðLÞ ∝ 1=LcðαÞ ∝ e−ζ=α. The
structure factor equally reveals the value of the total spin
via Sðq ¼ 0Þ ¼ ð1=3LÞhðPi ŜiÞ2i. For the Heisenberg
chain, the total spin is a good quantum number and vani-
shes at zero temperature on any finite lattice [Fig. 3(a)],
whereas any nonzero coupling to the bath breaks this
symmetry [Fig. 3(b)]. The finite value of Sðq ¼ 0Þ reflects
the entanglement of the spin chain and the bath.
From the equal-time correlation functions, one would

conclude that in the small α limit and at distances smaller
than Lc one observes the physics of the Heisenberg model.
This turns out not to be the case. One of the defining
properties of the Heisenberg chain is Lorentz invariance
that renders space and time interchangeable. In Fig. 4 we
show the local spin susceptibility

χðr ¼ 0; L; βÞ ¼ 1

L

XL

i¼1

Z
β

0

dτ hŜzi ðτÞŜzi ð0Þi ð9Þ

where Ŝzi ðτÞ ¼ eτĤŜzi e
−τĤ. As detailed in the Supplemental

Material [28], for the Heisenberg model χðr ¼ 0; L; β →
∞Þ ∝ lnðLÞ and χðr ¼ 0; L → ∞; βÞ ∝ lnðβÞ. In Fig. 4(a)
this scaling is confirmed for the Heisenberg model. Of
particular interest is the dataset at α ¼ 0.1. Here, our lattice
sizes are smaller than LcðαÞ, and the real-space correlations

CðrÞ in Fig. 2 are not distinguishable from those of the
Heisenberg model. However, χðr ¼ 0Þ shows marked devi-
ations from the logarithmic scaling of theHeisenbergmodel.
Hence, in the crossover regime where our system sizes are
smaller than LcðαÞ, the local susceptibility is not controlled
by the Heisenberg fixed point. In particular, our data are
consistent with correlations in time that decay slower than
1=τ. For larger values of α our system sizes exceed Lc such
that we can pick up long-range order in the local suscep-
tibility, i.e., χðr ¼ 0; L → ∞; βÞ ∝ β. As apparent from
Fig. 4(b), we observe this behavior for large values of α.
Note that for any value ofαwe expect the local susceptibility
to reveal long-range order for lattice sizes L > LcðαÞ.
Discussion.—Our results demonstrate the efficiency of

our quantumMonte Carlo method for retarded interactions.
Unprecedentedly large lattices at very low temperatures can
be reached, necessary to reveal the physics of dissipative
S ¼ 1=2 quantum spin chains.
To best interpret our results, it is convenient to consider

our model in the α versus s plane. For s < 1 (s > 1) the
coupling to the bath is relevant (irrelevant). For s > 1 we
conjecture that there will be a phase transition between the
Heisenberg chain and a phase with long-ranged order at
finite value of αcðsÞ. We note that for the 1þ 1 dimensional
nonlinear Ising and O(2) sigma models, such a dissipation-
induced ordering transition has been studied [21]. At s ¼ 1
(considered here), the coupling to the bath is marginal, and
our results are consistent with the interpretation that it is
marginally relevant. As a consequence, we observe a very
slow flow: in the small α regime lattice sizes greater than
LcðαÞ ∝ eζ=α are required to reveal long-range ordering.
The physics in the crossover regime L < LcðαÞ is particu-
larly interesting. Here, the real-space correlation functions
decay as 1=r akin to the Heisenberg chain. On the other
hand, the imaginary-time correlations reveal a breakdown
of Lorentz invariance and fall off much slower than 1=τ.
A possible interpretation is the proximity to the quantum

(a)

(b)

(c)

FIG. 3. Finite-size dependence of the spin structure factor SðqÞ
for (a) α ¼ 0.0 and (b) α ¼ 0.2. (c) Finite-size scaling of the order
parameter m2ðLÞ ¼ Sðq ¼ πÞ=L for different α.

(a) (b)

FIG. 4. Local spin susceptibility χðr ¼ 0Þ (a) for T → 0 as a
function of L and (b) for L → ∞ as a function of T. The dot-
dashed lines indicate an lnL dependence in (a) and an ln β
dependence in (b), whereas the dashed line in (b) corresponds to
the χ ∼ 1=T behavior expected for the ordered state.
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phase transition at αcðsÞ for s > 1. As seen in Ref. [21] for
the 1þ 1 dimensional nonlinear OðnÞ sigma models, such
transitions have dynamical exponents z > 1 with τ−1=z

decay in imaginary time. Such an interpretation of the
data can be tested since the phase diagram of our model in
the α–s plane can be investigated with our quantum
Monte Carlo algorithm.
Our model is relevant for the understanding of chains of

magnetic adatoms on two-dimensional metallic surfaces
[5]. These experiments are typically limited to a small
number of adatoms. The fact that the coupling to the bath is
marginally relevant implies that the physics of these chains
will be captured by the crossover regime. Furthermore,
spin-orbit coupling, generically present at surfaces, will
break the SO(3) spin symmetry down to SO(2). Similar
calculations as presented here but for the XXZ chain are
hence of particular interest.
The finite-temperature and dynamical properties of our

model will reveal how the two-spinon continuum will
evolve when coupled to the bath. While the high-energy
features of the dynamical spin structure factor will reveal
the two-spinon continuum, the low-energy features should
be captured by the spin-wave theory [28] of damped
magnons with spectral weight emerging above ω ∝ k2.
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