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We investigate experimentally three-dimensional (3D) hydrodynamic turbulence at scales larger than the
forcing scale. We manage to perform a scale separation between the forcing scale and the container size by
injecting energy into the fluid using centimetric magnetic particles. We measure the statistics of the fluid
velocity field at scales larger than the forcing scale (energy spectra, velocity distributions, and energy flux
spectrum). In particular, we show that the large-scale dynamics are in statistical equilibrium and can be
described with an effective temperature, although not isolated from the turbulent Kolmogorov cascade. In
the large-scale domain, the energy flux is zero on average but exhibits intense temporal fluctuations. Our
Letter paves the way to use equilibrium statistical mechanics to describe the large-scale properties of 3D
turbulent flows.
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Introduction.—Three-dimensional (3D) hydrodynamics
turbulence has been extensively studied to characterize the
energy transfers in the inertial range, the interval between
the energy injection scale and the small (dissipative) scale
[1–5]. While they control many properties of 3D turbulent
flows, e.g., mixing in industrial flows, or transport of tracers
in geophysical and astrophysical turbulent flows [6]; the
large-scale properties of turbulence, the scales larger than
the forcing scale, have been less investigated. Indeed, in
most experiments and direct numerical simulations (DNSs),
3D turbulent flows are forced at a scale comparable to the
container size to study the turbulent energy cascade within
the inertial range. However, it has been conjectured that the
large-scale modes of turbulent flows possess the same
energy and are in a statistical stationary equilibrium regime
[4,7–10]. This equipartition regime, also called thermal
equilibrium, would occur if no mean energy flux is trans-
ferred from the forcing scale to the large scales. Such a
statistical equilibrium is difficult to observe in most exper-
imental systems and numerical simulations because there is
no scale separation between the forcing scale and the
container size. Numerical simulations have recently con-
firmed the statistical equilibrium in 3D forced turbulent
flows for the spectrally truncated Navier-Stokes equations
[11] and the truncated Euler equation [12–15], but exper-
imental evidence of this regime remains elusive.
Here, we generate 3D hydrodynamic turbulence using

centimetric magnetic particles immersed in a large fluid
reservoir. This method provides a wide interval between the
energy injection scale and the container size. We observe a
statistical equilibrium regime in this large-scale interval
while a turbulent cascade develops in the inertial range. We
also show that the effective temperature of the statistical
equilibrium regime is related to the injection of energy. Note
that large-scale structures in decaying 3D turbulence have

been investigated [16–21], but are different from the
stationary (forcing) case [14]. Other turbulent systems also
exhibit large-scale statistical equilibrium, e.g., in wave
turbulence with no inverse cascade, such as capillary waves
[22–24], bending waves in mechanical plates [25], or
optical waves [26]. Conversely, the presence of an inverse
cascade implies that two-dimensional hydrodynamic turbu-
lence [27], gravity wave turbulence [28], or acoustic wave
turbulence in a superfluid [29] do not exhibit a statistical
equilibrium regime.
Theoretical backgrounds.—In the case of incompressible,

inviscid, and force-free turbulent flows, Kraichnan [10]
derived the statistical equilibrium energy spectrum ETðkÞ
for low wave numbers k

ETðkÞ ¼
4παk2

α2 − β2k2
: ð1Þ

α, β are determined by the total energy and the helicity of
the system. This result referred to as absolute equilibrium,
is related to classical equilibrium statistical mechanics and
is equivalent to the equipartition of the total kinetic energy
among the large-scale Fourier modes for β ¼ 0 (non-
helical fluid) [8,9,19,30]. One can also say that the large-
scale equipartition implies that the spectral energy density
per unit mass ETðkÞdk is equal to the number of modes
times the energy per mode per mass, i.e.,

ETðkÞdk ¼ 4πkBT
ρ

k2dk ð2Þ

with kB the Boltzmann constant, ρ the fluid density, and
T a temperature in a classical thermodynamic equilibrium
sense. Therefore, one obtains the expression which is
equivalent to Eq. (1) when βk ≪ α. Note that deviations
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from Eq. (1) are expected for a broadband spectral forcing
instead of a narrow one [14] or in the case of anisotropic
turbulence [31].
By assuming high-Reynolds number isotropic turbulence,

the energy spectrum in the inertial range (i.e., for high k) is
given by the Kolmogorov spectrum [2]

EKðkÞ ¼ CKϵ
2=3k−5=3 ð3Þ

with CK ≃ 1.6 the experimentally measured Kolmogorov
constant [32], and ϵ the rate of energy dissipation per unit
mass. In the stationary regime, ϵ is constant and equal to the
energy flux transferred from the forcing scale to the
dissipation scale. Therefore, ϵ is also equal to the energy
injection rate in the stationary regime.
Experimental setup.—We inject energy homogeneously

into the fluid using small magnetic particles. The nonlinear
transfer of energy and turbulent cascade towards small
scales (inertial range) have been characterized using this
method [33]. To measure the large-scale properties of
turbulence, we scaled up this experimental system. A
plexiglass square container of length L ¼ 32 cm and height
h ¼ 22 cm is filled with water (22.5 L) and sealed by a
transparent lid. This fluid container sits between a pair of
Helmholtz coils (0.49 m inner diameter and 1 m outer
diameter). The pair of coils is powered by a sinusoidal
current (Itech IT7815 ac 15 kW power supply) and gen-
erates a vertical oscillating magnetic field BðtÞ with an
amplitude B ∈ ½0; 360� G and a frequency F ∈ ½0; 25� Hz.
This ac magnetic field is homogeneous within all the
volume of the fluid container (5% accuracy) and transfers
kinetic energy to N neodymium magnets encapsulated in
plexiglass shells (1 cm), which are immersed in the fluid
(N ∈ ½50; 450�). The volume fraction of the magnetic
particles is smaller than 1.5%. The kinetic energy of the
magnetic particles is then transferred to the surrounding
fluid randomly in both space and time (see Refs. [33–35]
and movies in the Supplemental Material [36,38]). The
forcing scale is estimated to be 5 cm. It corresponds to the
integral scale Li defined as the abscissa of the maximum of
the energy spectrum (see below). Note that Li cannot be
accurately computed from the autocorrelation function of the
velocity field since the container size L is not eight times
larger than the integral scale [5,33,39]. The fluid velocity is
measured locally by nonintrusive laser Doppler velocimetry
(LDV Dantec Flow Explorer 1D) with a sampling frequency
of 250 Hz.We perform particle image velocimetry (PIV) [40]
to measure the fluid velocity field in a horizontal xy plane
(32 × 32 cm2). The fluid is seeded with Polyamide fluid
tracers (50 μm) illuminated by a horizontal laser sheet and a
high-speed camera (Phantom V1840, 2048 × 1952 pixels2

at 200 fps), located on the top of the fluid container, records
time series of images. The mean fluid velocity is smaller
than the standard deviation of the velocity fluctuations σu
(< 10%), such that one can assume that there is no mean

flow. The isotropy of the velocity field is also checked for
different values of N [41]. Typical values of the turbulent
flow are the following: the dissipation rate ϵ is
3 × 10−4 m2=s3, the Reynolds number at the integral scale
Li ≃ 5 cm is 650, and the Reynolds number at the Taylor
scale Lλ ≃ 7.6 mm is Reλ ¼ 100. We have Reλ ∈ ½56; 100�
when changing the experimental parameters (F, N, or B).
Spatial power spectrum.—The longitudinal and trans-

verse horizontal fluid velocities are defined as uðx; tÞ and
vðx; tÞ. We first measure the longitudinal EuuðkxÞ and
transverse EvvðkxÞ spectra (Fig. 1). The inertial range is
consistent with the Kolmogorov prediction over a decade.
Indeed, the power spectra are proportional to k−5=3x in the
inertial range and the ratio between the unidimensional
(1D) power spectra is equal to EvvðkxÞ=EuuðkxÞ ¼ 4=3 [5]
(black lines in Fig. 1). In the case of isotropic turbulence,
the 3D power spectrum EðkÞ is derived from the longi-
tudinal and transverse spectra [5,18],

EðkÞ ¼ −k
d
dk

�
1

2
EuuðkxÞ þ EvvðkxÞ

�
: ð4Þ

The energy spectrum EðkÞ is shown in Fig. 1. A k2 power
law is observed in the energy spectra at lower wave
numbers, illustrating the statistical equilibrium regime,
while a k−5=3 power law is observed at higher wave
numbers, indicating a direct energy cascade in the inertial

FIG. 1. 3D power spectrum density EðkÞ (green) derived from
the 1D spectra of the longitudinal velocity EuuðkxÞ (red), and
transverse velocity EvvðkxÞ (blue), [Eq. (4)]. Dashed line: k2

power law illustrating the large-scale statistical equilibrium
regime. Dot-dashed line: k−5=3 power law illustrating the inertial
range of the turbulent cascade. The vertical dashed line corre-
sponds to the inverse of the integral scale ki=2π ¼ 1=Li and
separates the large-scale domain (k < ki) from the inertial range
(k > ki). The PIV measurements are performed at F ¼ 20 Hz,
B ¼ 290 G and N ¼ 55. Inset: power spectrum densities (PSD)
at different ϵ ∈ ½1.1; 3.2� × 10−4 m2=s3.
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range. In between these regimes, the wave numbers close to
the value ki ¼ 2π=Li suggest that the statistical equilibrium
state and the out-of-equilibrium one interact with each
other (see below).
Effective temperature.—Both k2 and k−5=3 power laws

are consistently observed in the energy spectra when
increasing the energy injection rate ϵ (inset of Fig. 1).
For each 3D spectrum EðkÞ, we compute the effective
temperature by integrating both members of Eq. (2) in the
large-scale interval k ∈ ½kL ¼ 2π=L; ki ¼ 2π=Li�,

Texp ¼
3ρ

32π4kB

L3L3
i

L3 − L3
i

Z
ki

kL

EðkÞdk: ð5Þ

Texp is shown in Fig. 2 as a function of the energy injection
rate ϵ (red cross). One can also estimate the temperature by
fitting directly the experimental 3D spectra with Eq. (2),
which leads to similar values of the temperature (blue circle
in Fig. 2). Texp is found to be 13 orders of magnitude higher
than the room temperature and proportional to ϵ2=3 (Fig. 2).
This result is explained by equating Eqs. (2) and (3), which
gives the relationship

T ¼ ρCK

4πkB
k−11=3i ϵ2=3: ð6Þ

Structure functions.—The velocity increments at a dis-
tance r, SiðrÞ ¼ h½vðxþ rÞ − vðxÞ�ii are now computed
from the PIV measurements. The insets of Fig. 2 show that

S2ðrÞ ∼ ðϵrÞ2=3 and S3ðrÞ ¼ −4ϵr=5 in the inertial range,
as predicted theoretically [2,3,5]. For large scales (i.e.,
r > 0.1 m), S2ðrÞ and S3ðrÞ are found to be roughly
independent of r, except when r ≃ L. We also found that
S2ðrÞ ≃ 2σ2u, suggesting that the velocities are uncorrelated
at long distances, as expected [18].
Velocity probability distribution.—The probability dis-

tribution functions (PDFs) of the velocity field (square in
Fig. 3) are found to be strongly non-Gaussian probably
because the PDFs of the Lagrangian magnetic particle
velocity are stretched exponentials (see Supplemental
Material [36]). However, we show that the large-scale
modes are normally distributed by applying a spatial
low-pass filter to the velocity field (diamond in Fig. 3),
confirming that the large-scale modes have reached a
statistical equilibrium. The kurtosis of the low-pass filtered
velocity distribution is equal to 3 (inset of Fig. 3). The shape
of the PDF of the low-pass filtered velocities is also
independent of the energy injection rate ϵ, which is
illustrated by the constant value of the kurtosis (inset of
Fig. 3). High-pass filtering of the velocity field (circle in
Fig. 3) also shows that the non-Gaussianity of the PDFs is
reminiscent of the magnetic particle velocity one.
Mean energy flux.—Measuring the energy flux is

essential to understanding the dynamics of turbulent
phenomena [42]. We compute the time-averaged energy
flux spectrum ΠðkÞ from the expression Πðk; tÞ ¼
hv<k · ½v<k · ∇v>k �ir þ hv<k · ½v>k · ∇v>k �ir [4], where v<k ðrÞ≡R
k
0 v̂ðk0Þeik

0·rdk0 is the low-filtered velocity field at the wave
number k, v>k ðrÞ≡

R∞
k v̂ðk0Þeik0·rdk0 the high-filtered one,

FIG. 2. Effective temperature Texp of the statistical equilibrium
regime of the large scales for different energy injection rates ϵ. The
energy injection rate ϵ is measured using ϵ ¼ 2ν

R
∞
2π=L k

2EðkÞdk.
Texp is measured from the 3D spectra shown in Fig. 1 using
Eqs. (2) (blue circle) and (5) (red cross). The solid dashed line
corresponds to Eq. (6) using ki=2π ¼ 13.3 m−1. Insets: structure
functions S2ðrÞ (top) and S3ðrÞ=ð4ϵ=5Þ (bottom) for different ϵ
(same colors as in the inset of Fig. 1). Solid lines correspond to
r2=3 and −r, respectively.

FIG. 3. Probability density functions (PDFs) of the normalized
fluid velocity fluctuations u=

ffiffiffiffiffiffiffiffiffi
hu2i

p
of (diamond) large-scale

modes, (square) all modes, and (circle) small-scale modes for
σu ¼ 0.6 cm=s. The cutoff value of the filter is equal to
k=2π ¼ 9.4 ðm−1Þ. The black dashed line represents a Gaussian
distribution. Inset: kurtosis (K ¼ hu4i=hu2i2) of the large-scale
modes as a function of ϵ (σu ∈ ½0.6; 1.3� cm=s).
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and v̂ is the Fourier transform of the velocity field v.
The zero-mean energy flux measured at low wave numbers
confirms the statistical equilibrium regime (Fig. 4). The
interval in which the mean energy flux is zero corresponds
to the same interval in which the k2 power law of the
energy spectrum is observed. In the inertial range, the
energy flux is positive and implies a direct energy cascade
towards high wave numbers, corresponding to the turbu-
lent cascade shown in Fig. 1. For wave numbers k=2π
higher than 100 m−1, the energy flux strongly decreases,
which is consistent with Fig. 1.
Energy flux fluctuations.—Although no energy cascades

within the large scales in equipartition, intense temporal
fluctuations of the energy flux Πðk; tÞ are observed (bottom
inset of Fig. 4; see also Supplemental Material [36]). This
highlights that the large-scale domain is not isolated from
the inertial range. Within the large-scale interval, the energy
flux follows a Gaussian distribution (bottom inset of

Fig. 4), whose standard deviation σΠðkÞ ¼ ½Πðk; tÞ2�1=2
is proportional to k2 (top inset), similarly to the energy
spectrum EðkÞ. We can thus infer that σΠðkÞ=EðkÞ ∼ k0 for
k < ki. The fluctuations of zero-mean energy flux observed
at low wave numbers (top inset Fig. 4) have also been
reported in DNSs [11,13]. The top inset of Fig. 4 also
shows that these fluctuations are much more intense within
the direct cascade but are strongly damped by viscous
dissipation at high wave numbers.
Temporal power spectrum.—We now measure the tem-

poral spectrum EuðfÞ of the horizontal velocity uðtÞ

(Fig. 5). The signal is recorded for T ¼ 5 h to converge
the statistics at low frequencies (f < fi), which represent
the large-scale modes. To avoid a significant increase in the
fluid temperature, we repeatedly performed LDV measure-
ments for 100 s and then we let the fluid cool down for
10 min. The signal uðtÞ is shown in the inset of Fig. 5, with a
low-pass filtered signal (black) to emphasize the slow
modes of the temporal signal. The frequency spectrum
shown in Fig. 5 is proportional to f−5=3 at high frequencies
(f > fi). This is consistent with the k−5=3 power law
observed in the unidimensional energy spectrum, which
implies a direct energy cascade in the inertial range (Fig. 1).
This power law was predicted by the Tennekes’ model
(large-scale advection of turbulent eddies) in isotropic
turbulence without mean flow [33,43]. At low frequencies
(f < fi), the frequency spectrum is found to be almost flat
as f0, implying that large scales are uncorrelated. This is
similar to the unidimensional spatial spectrum EuuðkÞ ∼ k0

at large scales (Fig. 1), suggesting that we observe the
statistical equilibrium regime at low frequencies.
Conclusion.—We have experimentally shown that the

large-scale dynamics in forced dissipative 3D hydrody-
namic turbulence are in agreement with the statistical
equilibrium prediction. This system is a remarkable exam-
ple in which the large scales are in statistical equilibrium,
while smaller scales are in an out-of-equilibrium stationary
regime. A direct consequence of this experimental valida-
tion is that simulations leading to a statistical equilibrium
regime, such as those of the truncated Euler equation [13],

FIG. 4. Time-averaged energy flux spectrum ΠðkÞ. At large
scales (k < ki), zero-mean energy flux is measured (equiparti-
tion). In the inertial range (k > ki), the energy flux is positive and
implies a direct cascade of energy. Insets: (top) standard deviation
of the energy flux spectrum σΠðkÞ. (bottom) PDFs of the temporal
fluctuations of the energy flux Π=σΠ for three values of the wave
number k (see colored bullets in the main figure). The green line
represents a Gaussian distribution.

FIG. 5. Temporal power spectrum density of the horizontal
velocity EuðfÞ. The dashed line represents a f0 power law and the
dot-dashed line represents a f−5=3 power law. The forcing
parameters are identical to Fig. 1. fi indicates the beginning
of the inertial range, i.e., the typical correlation frequency of the
flow. Inset: Horizontal velocity uðtÞ low-pass filtered at 2 Hz
(blue), 0.2 Hz (red), and 0.02 Hz (black), as illustrated by the
colored arrows in the main figure.
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could provide a new tool to efficiently simulate the
large-scale dynamics of 3D turbulent flows in various fields.
Our findings also pave the way to possibly use concepts
of equilibrium statistical mechanics (such as fluctuation-
dissipation and fluctuation theorems) for large-scale turbu-
lent flows. It can help better understand the interactions
between the degrees of freedom at equilibrium (large scales)
with out-of-equilibrium structures (small scales), which are
essential when studying turbulent phenomena. In the future,
we will explore the transient regimes of the statistical
equilibrium of large scales, called the thermalization proc-
esses, by measuring the growth and decay of turbulence
[17,20]. More generally, better identifying the mechanisms
governing large-scale properties of turbulent flows such as
statistical equilibrium, condensation, or inverse cascade, is
of primary interest in 3D turbulence [13,35,44,45], wave
turbulence [22,25,28], and climate modeling [46].
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