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Elliptically polarized light waves carry the spin angular momentum (SAM), so they can exert optical
torques on nanoparticles. Usually, the rotation follows the same direction as the SAM due to momentum
conservation. It is counterintuitive to observe the reversal of optical torque acting on an ordinary dielectric
nanoparticle illuminated by an elliptically or circularly polarized light wave. Here, we demonstrate that
negative optical torques, which are opposite to the direction of SAM, can ubiquitously emerge when
elliptically polarized light waves are impinged on dielectric nanoparticles obliquely. Intriguingly, the
rotation can be switched between clockwise and counterclockwise directions by controlling the incident
angle of light. Our study suggests a new playground to harness polarization-dependent optical force and
torque for advancing optical manipulations.

DOI: 10.1103/PhysRevLett.129.053902

Optical forces and torques have been widely utilized to
manipulate micro- and nanoscale objects for pushing [1–3],
pulling [4–7], lateral deflecting [8–10], and trapping
[11,12]. Polarization-anisotropic particles (e.g., rod or
dumbbell) can be aligned along the polarization direction
of light by the conservative optical torque [13] in a linearly
polarized beam. They can also experience optical torques
from gradient forces in noncircular laser spots [14].
Circularly polarized light waves carrying angular

momenta rotate nonspherical particles with nonconserva-
tive optical torques in the same direction as the spin angular
momentum (SAM) s, being known as the “positive optical
torque” (POT) [15–20], which can originate from the
optical scattering and absorption [20,21]. The imaginary
Poynting momentum density of cylindrical vector beams,
with zero global spin and orbital angular momenta, induces

a local nonzero angular momentum capable of rotating
isotropic spheres [22]. The opposite, “negative optical
torque” (NOT), was found in the “windmill effect”
[20,23,24] as a consequence of radiation pressure being
projected into the lateral direction due to the slant surface. It
could also be found on complex micromachines [25]
analogous to the windmill effect. Meanwhile, NOTs
emerge on dipolar bianisotropic particles [16] and particle
clusters illuminated by circularly polarized beams via the
field retardation [26,27] and many-body interactions [28].
The NOT, also known as “left-handed torque,” can exist in a
single phase-retardation plate [29]. A wedge-shaped par-
ticle was reported to experience a NOT in a reverse
direction with respect to the orbital angular momentum
of the optical vortex [30], principally resembling the
mechanism of optical pulling [31] and lateral forces
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[8,32]. The linearly polarized beam can excite two distinct
plasmonic modes to generate both POT and NOT on a
metallic chiral plasmonic nanostructure by the coupling of
light and chirality [33]. Gain (negative imaginary part of
refractive index) particles were found to experience revers-
ible optical torques in linearly polarized beams [34]. By
exciting high-order multipolar modes in plasmonic reso-
nators, the NOT can be induced by the resonant scattering
[35]. Despite extensive studies, in a general case, it is
counterintuitive to envision a NOT in the opposite direction
of s emerging on a dielectric nanoparticle illuminated by a
single circularly polarized beam, as widely accepted by
conventional dipole-mode theories [18,19].
Here, we unveil NOTs on an ordinary dielectric non-

spherical nanoparticle controlled by different helicities of
elliptically polarized light waves, that is, by different

orientation angles of the quarter-wave plate. S and p
polarizations, which induce the off-plane and in-plane
dipole moments on a triangular prism, respectively, gene-
rate distinct distributions of optical forces, and thus
opposite optical torques. The rotation directions of parti-
cles can also be easily switched between clockwise and
counterclockwise using different incident angles of light
with specific helicities. Our studies disclose the ubiquitous
but long-neglected NOT, and provide new possibilities to
harness reversible optical torques for various physical and
biochemical applications.
To investigate the ubiquitous optical torques by an

elliptically polarized beam, we consider a simple system:
an equilateral triangular prism (refractive index, nþ ik,
k ¼ 0) with side a and thickness t placed at a flat interface
of air (nair ¼ 1) and water (nwater ¼ 1.337), illuminated by

FIG. 1. Positive and negative optical torques on dielectric triangular prisms. (a) Schematics of the triangular prism (refractive index
nþ ik) placed at the interface of air (n ¼ 1) and water (n ¼ 1.337) and under the illumination of obliquely incident light beam
(wavelength 532 nm, incident angle θ) with the left-handed circular polarization (LCP). The prism (side a, thickness t) rotates
counterclockwise [top view, defined as the POT (Mz > 0)] when the incident angle θ ¼ 0. The NOT can emerge when the triangular
prism is placed at the interface for the LCP, or immersed inside water for the elliptical polarization. (b) Schematics of the contributions
from the geometric anisotropy and the SAM. SðiÞ represents the incident Poynting vector. (c) Optical torque versus the orientation angle
of the quarter-wave plate γ when the rotation angle of the triangular prism φ ¼ 30°. Red and blue curves denote the ellipticity angles
χ ¼ 1=2π (phase delay in the y direction) and χ ¼ −1=2π, respectively. In this case with the geometry symmetry, Maniso ¼ 0, and
M ¼ MSAM. (d) Optical torque versus the orientation angle of the quarter-wave plate γ when φ ¼ 0. When the incident angle θ ¼ 40°,
Maniso ≠ 0. The s and p polarizations correspond to the maximum POT and NOT, respectively. Maniso ¼ 0, and M ¼ MSAM when
θ ¼ 0. In (c) and (d), a ¼ 150 nm, t ¼ 150 nm, and εp ¼ 16.

PHYSICAL REVIEW LETTERS 129, 053902 (2022)

053902-2



an obliquely incident circularly polarized light (wave-
length, λ ¼ 532 nm; incident angle, θ), as shown in
Fig. 1(a). The strategy of utilizing the buoyancy at the
interface serves as a paradigm for the investigation of
intriguing optical phenomena and facilitates practical
applications [8,31–33,36,37]. The prism rotates following
the direction of the SAM when the beam is at normal
incidence. For instance, it rotates counterclockwise (POT,
top view) for the left-handed circular polarization (LCP).
The optical torque on an electric dipole can be given under
the dipole approximation as (see Supplemental Material
[38]) [18,19,39]

M ¼ 8πωImðαeÞse; αe ≈
αð0Þe

1 − i 2k
3

3ε α
ð0Þ
e

; ð1Þ

where se is the electric SAM, αe is the electric polarizability

with αð0Þe ¼ εa3½ðεp − εÞ=ðεp þ 2εÞ�, a is the radius of the
particle, εp and ε are the permitivities of the particle and
medium, respectively. ImðαeÞ is normally positive for an
ordinary dielectric particle either with or without absorp-
tion (see Supplemental Material [38]). Taking a nonabsorb-

ing dipole as an example, αð0Þe is real, and ImðαeÞ > 0,
meaning that the optical torque (POT) is in the same
direction as se. The NOT can emerge on the triangular
prism at the interface for the LCP, or immersed inside water
for the elliptical polarization. The rigorous calculation of
the optical torque on an arbitrarily sized and shaped
particle, as adopted in this Letter, can be given as

M ¼
I
S
ðr × T

↔Þ · bn dS; ð2Þ

where T
↔
is the time-averaged Minkowski stress tensor [12],

and S is a closed surface where we do the integral.

Though the optical torque is too complicated to be
mathematically formulated for a nonspherical particle [40],
we can interpret the torque by dividing it into terms from
the geometric anisotropy and spin angular momentum
(SAM) as M ¼ Maniso þMSAM [Fig. 1(b)]. Maniso, which
can be positive and negative, originates from the scattering
light by the geometry anisotropy, and can be obtained by
subtracting the contribution from the SAM.WhereasMSAM
is always positive, following the direction of se. The
simulation of optical torque (Mz) with the contribution
only from the SAM can be visualized by rotating the prism
(εp ¼ 16) with φ ¼ 30°, as shown in Fig. 1(c). Mz

coincides with the amplitude and direction of the SAM
(POT) as the quarter-wave plate orientation angle γ varies,
and reaches the maximum values at the left-handed and
right-handed circular polarizations (RCP). When the geo-
metry anisotropy is deployed, e.g., φ ¼ 0, the Maniso
emerges with a strong correlation with γ, as shown in
Fig. 1(d). The optical torque, when θ ¼ 0 (normal inci-
dence and with Maniso ¼ 0), is very similar to Fig. 1(c).
Whereas the small γ (approaching the p polarization)
corresponds to a large NOT. In contrast, the large γ
(approaching the s polarization) corresponds to a large
POT. Therefore, we can conclude that the in-plane polari-
zation (p polarization) is the dominating factor that
surpasses the off-plane polarization (s polarization) and
SAM to generate a NOT. This effect can be interpreted as
the following: s and p polarizations polarize particles with
dipole moments in different directions. The off-plane
dipole moments by the s polarization and in-plane dipole
moments by the p polarization, generate distinct distribu-
tions of optical forces, which induces opposite optical
torques. Thus, the NOT strongly depends on the rotation of
the triangular prism.
The high permittivity (e.g., εp ¼ 16) is not essential to

generate a NOT, as shown in Fig. 2(a), which plots the

FIG. 2. Size-, permittivity-, and absorption-dependent NOTs. (a) Optical torque versus the orientation angle of the quarter-wave plate γ
and the permittivity of particle εp. The small γ (approaching the p polarization) leads to the NOT, while the large γ (approaching the s
polarization) leads to the POT. εp > 15 is required to obtain the NOT for the LCP (γ ¼ 45°). a ¼ 150 nm, t ¼ 150 nm, and θ ¼ 40°.
(b) Optical torque versus the side a and the permittivity εp of the particle. Most of Mz remain negative, while the POTs occur in the
fringe with the high permittivity. γ ¼ 15°, t ¼ 150 nm, and θ ¼ 40°. (c) Influence of ImðεpÞ to the NOT. The presence of absorption
significantly diminishes the NOT by introducing a POT from the absorption. t ¼ 150 nm, ReðεpÞ ¼ 16, and θ ¼ 40°. In (a)–(c), the
rotation angle of the triangular prism φ is 0. The contours in (a) and (c) denote Mz ¼ 0.
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optical torque versus εp and γ. The NOT can occur even for
a low permittivity (e.g., εp < 3) when γ < 30°. For the LCP
(γ ¼ 45°), a high permittivity, i.e., εp > 15, is required to
obtain the NOT. Meanwhile, the small γ (γ ¼ 15°) does not
always guarantee a NOT, as shown in Fig. 2(b). The POT
unexpectedly emerges in the fringe with the large permit-
tivity, which may be correlated with the emergence of
multipoles in high-permittivity materials. Since such high
permittivity does not commonly exist in nature, the dis-
cussion of this effect is beyond the scope of this Letter. We
then keep ReðεpÞ ¼ 16 and sweep ImðεpÞ and a [Fig. 2(c)],
showing that the introduction of ImðεpÞ diminishes the
NOT. This effect can be interpreted by the POT from the
absorption, which, for the beam with the LCP propagating
along the −z direction, can be given as [20,35,41]

Mabs ¼
σabsIinc

ω
bz; ð3Þ

where σabs is the absorption cross section, Iinc is the
incident intensity, and ω is the frequency of light. The
triangular prism eventually rotates at a velocity under
the balance of optical and fluidic torques [20], which also
serves as a paradigm to quantify the optical torque. Other
methods include measuring the Stokes parameters [42] or
the change of angular momentum of light [43,44], orienting
a flat object [45], etc.
To visualize the NOT with the geometry of the TiO2

triangular prism, the map of the optical torque with the side
a and thickness t is depicted in Fig. 3(a). The NOTemerges
when the side increases under the illumination of an

elliptically polarized beam (γ ¼ 35°). γ equaling 35° is
used instead of 45° (LCP) because that the high permittivity
is required to generate the NOT for the LCP [see Fig. 2(a)].
The optical torques on TiO2 triangular prisms can remain
NOTs covering all calculated sizes when γ ¼ 15° (see
Supplemental Material [38]). Since the optical torque is
directly correlated with the distribution of force, we
then investigate the energy flow (force) in two prisms
(a ¼ 200 nm, t ¼ 150 nm; a ¼ 164 nm, t ¼ 150 nm)
with opposite optical torques. In the far field, the expression
of optical force on a particle can be given as [5,46]

F ¼ − n
c

Z
S∞

fS − SðiÞgdS

¼ − n
c

Z
S∞

fSðmixÞ þ SðsÞgdS

¼ − n
8π

Z
S∞

fRe½EðiÞ ×HðsÞ� þ EðsÞ ×HðiÞ��

þ Re½EðsÞ ×HðsÞ��gdS; ð4Þ

where S, SðiÞ, SðmixÞ, and SðsÞ are the total, incident, mixed,
and scattered time-averaged Poynting vectors, respectively;
EðiÞ and HðiÞ denote the incident electric and magnetic
fields, respectively. Thus, the optical force can be analyzed
by plotting the Poynting vectors. For the normal incidence,
SðsÞ rotates following the direction of the SAM, while the
optical force should be calculated by adding SðmixÞ, which
is shown in Supplemental Material [38]. SðsÞ rotates
clockwise for the LCP and counterclockwise for the

FIG. 3. Size-dependent optical torques on TiO2 triangular prisms and optical field properties. (a) Optical torque Mz on the
TiO2 (εp ¼ 2.672) triangular prism versus side a and thickness t in a beam with γ ¼ 35° and θ ¼ 40°.Mz on TiO2 triangular prisms can
remain NOTs with different sizes when γ is small (e.g., γ ¼ 15°, see Supplemental Material [38]). The inset presents the incident
Poynting vector in the top view. (b) Stream lines of the scattering Poynting vector SðsÞ for the LCP (red lines) and RCP (blue lines) when
θ ¼ 0. The clockwise rotation of SðsÞ for the LCP and counterclockwise rotation of SðsÞ for the RCP rotate the triangular prism
counterclockwise and clockwise, respectively, following the direction of the electric SAM se. a ¼ 200 nm and t ¼ 150 nm. (c) Incident
SAM for the RCP light with θ ¼ 40°. The SAM is in the same direction as the wave vector. (d) Most of [S − SðiÞ] for the design labeled
as the star (a ¼ 200 nm, t ¼ 150 nm) rotates counterclockwise, meaning that the prism rotates clockwise (NOT). (e) Most of [S − SðiÞ]
for the design labeled as the triangle (a ¼ 164 nm, t ¼ 150 nm) rotate clockwise, meaning that the prism rotates counterclockwise
(POT). The rotations of Poynting vectors in (b), (d), and (e) should be seen from the far field (away from the triangular prism).
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RCP, representing the counterclockwise and clockwise
rotations of the triangular prism, respectively. When the
beam is an obliquely incident RCP light wave, the SAM is
in the same direction as the wave vector [Fig. 3(c)]. Herein,
S − SðiÞ for the design labeled as the star (a ¼ 200 nm,
t ¼ 150 nm) rotates counterclockwise, meaning that the
prism rotates clockwise (NOT). Whereas S − SðiÞ for the
design labeled as the triangle (a ¼ 164 nm, t ¼ 150 nm)
rotates clockwise, meaning that the prism rotates counter-
clockwise (POT). Note that the distributions of Poynting
vectors should be seen from the far field (away from the
triangular prism) as Eq. (4) is applicable in the far field.
By simply changing the incident angles, we can control

the rotation directions of the triangular prism, as shown in
Fig. 4(a). The POToccurs as expected when θ ¼ 0 (normal
incidence) for all configurations. The optical torques, under
γ ¼ 15°, shift from positive to negative when increasing the
incident angle. It is also the same situation for the silicon
and TiO2 triangular prims when they are placed at the
interface under γ ¼ 45° (LCP). Whereas, the optical torque
remains positive for triangular prisms fully immersed in
water for the LCP. We then plot the curve of the optical
torque versus the refractive index of the medium in
Fig. 4(b), showing that the sign of optical torque remains
unchanged. It is noted that the NOT does not always exist
during the rotation of the triangular prism, as shown in
Fig. 4(c). This is because that Maniso vanishes at the
symmetry points (e.g., 30° and 90°), thereby only the
positive MSAM now occurs. Consequently, the triangular
prism freezes at near 90°.
In summary, we have predicted anomalous NOTs

emerging from the excitation of obliquely incident light
waves with different helicities. S and p polarizations are

found to induce the distinct POT and NOT, respectively.
The NOT can arise when the orientation angle of the
quarter-wave plate γ < 30° [Fig. 2(a)], and can also be
found in ordinary materials (e.g., TiO2) for circularly
polarized beams with a large incident angle [Fig. 4(a)].
In principle, by exploring the contribution to the NOT from
the geometric anisotropy and SAM, we can attribute these
abnormal optical torques to the light-matter interaction
excited by the in-plane polarization (p polarization) rather
than the SAM which induces only the POT.
By changing the incident angles, we can switch the

particle rotation direction between clockwise and counter-
clockwise. We believe that our study not only showcases
anomalous optical torques, as illustrated for a triangular
prism, but also opens up a new paradigm for polarization-
controlled applications in optical forces, light-matter inter-
actions, and physical biology.
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