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Coupling among closely packed waveguides is a common optical phenomenon, and plays an important
role in optical routing and integration. Unfortunately, this coupling property is usually sensitive to the
working wavelength and structure features that hinder the broadband and robust functions. Here, we report a
new strategy utilizing an artificial gauge field (AGF) to engineer the coupling dispersion and realize a
dispersionless coupling among waveguides with periodically bending modulation. The AGF-induced
dispersionless coupling is experimentally verified in a silicon waveguide platform, which already has well-
established broadband and robust routing functions (directional coupling and splitting), suggesting potential
applications in integrated photonics. As examples, we further demonstrate a three-level-cascaded AGF
waveguide network to route broadband light to desired ports with an overwhelming advantage over the
conventional ones in comparison. Our method provides a new route of coupling dispersion control by AGF
and benefits applications that fundamentally rely on waveguide coupling.
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Light propagating in a waveguide usually has large
dispersions determined by the material and guide modes,
which have been well studied and many efforts have been
made to control these dispersions [1–3]. However, when
two or more waveguides are closely arranged, the overlap of
guided modes via the evanescent field will lead to the
coupling effects [4], which exhibit coupling dispersion. In
fact, coupling among waveguides is a common effect and
plays a key role in the context of integrated photonics [5,6],
quantum optics [7,8], optical computing and communica-
tions [9–11], etc. However, due to sensitivity of the overlap
of guided modes to the wavelength, the coupling exhibits
narrow band and highly structure-sensitive characteristics.
There have been some attempts to achieve a broadband
solution through parameter or structure optimization, e.g.,
adiabatic and asymmetric structures [12–17], metamaterials
[18–22], and topological designs [23]. However, it is still
challenging to improve their comprehensive performance to
meet the requirement for massive photonic integrations.
As an important physical concept, the artificial gauge

field (AGF) allows us to endow photonic systems with a
wide range of intriguing phenomena and novel functions,
such as an effective magnetic field for photons [24], the
photonic Aharonov-Bohm effect [25], and the broadband
optical switch [26]. Notably, the AGF induced by curved
waveguides exhibits high flexibility for manipulating opti-
cal fields, for example, light guiding and negative refraction
[27–29], Floquet topological insulators [30–32], and quan-
tum simulations [33–38]. However, most of these works

mainly focus on the engineering of photonic band structure
and control the light propagation in a global manner. In the
viewpoint of comprehensive optical manipulation, the AGF
would also provide a powerful tool to enable more precise
control of the optical field (e.g., coupling effect), that
requires further exploration.
Here, we develop a new coupling dispersion controlling

strategy by AGF, and experimentally demonstrate broad-
band dispersionless and robust coupling in a silicon-
on-insulator (SOI) integrated platform. This AGF is
introduced by the curved trajectory of waveguides, which
gives rise to a flat dispersion of coupling that indicates
insensitivity to wavelength and structure variations. We
clearly reveal the underlying physics of dispersionless
coupling by AGF theory and experimentally verify the
behaviors in densely packed silicon waveguides. In addi-
tion, three-level cascaded AGF waveguide networks are
demonstrated in broadband light routings that show over-
whelming advantages over the conventional counterparts.
Our work exploits the concept of AGF to control the
coupling dispersion and demonstrates the possibility of
broadband, robust and dense photonic integrations.
We would like to start from a one-dimensional (1D)

coupled waveguide array. In the paraxial approximation,
the light propagation is described by the tight-binding
coupled mode equation

−i ∂aj
∂z

¼ cj;j−1aj−1 þ cj;jþ1ajþ1 þ βjaj; ð1Þ
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where aj and βj is the mode amplitude and propagation
constant in the jth waveguide, cj;jþ1 is the coupling
coefficient between the jth and (jþ 1)th waveguides,
and cj;jþ1 ¼ c�jþ1;j (*stands for complex conjugate). For
straight waveguides, cj;jþ1 and βj are constants along the
propagation direction z. However, if waveguides have a
bending trajectory following an arbitrary periodic func-
tion xðzÞ ¼ xðzþ PÞ, where P is the modulation period
[Fig. 1(a)], a nontrivial AGF can be introduced, which
modifies cj;jþ1 to be z dependent (we drop the subscript j,
jþ 1 for simplicity) c0ðzÞ ¼ ceiGðzÞd [39], where GðzÞ ¼
k0∂x=∂z is the curve-introduced AGF, k0 ¼ 2πn0=λ is the
wave number in the ambient medium. d is the center-to-
center separation between waveguides, and c is the
coupling between straight waveguides. In the high-
frequency limit (2π=P ≫ c), the z-dependent coupling
c0ðzÞ can be averaged to an effective coupling c0eff :

c0eff ¼
c
P

Z
P

0

eiGðzÞddz≡ ceffeiθ; ð2Þ

where ceff ¼ cΓðGÞ is the coupling strength with ΓðGÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1=PÞ R P

0 cos½GðzÞd�dzg2 þ fð1=PÞ R P
0 sin½GðzÞd�dzg2

q
the AGF modulation.

Then, we would like to analyze the dispersion of
coupling. Since the coupling phase (θ) will not influence
the intensity evolutions of the light, only the dispersion of
the coupling strength should be considered. To highlight the
wavelength dependence, we express ceffðλÞ ¼ cðλÞΓ½GðλÞ�.
By calculating the derivative of ceff to λ, the coupling
dispersion writes

∂ceffðλÞ=∂λ≡ νeff ¼ Γ½GðλÞ�ðν0 þ νAGFÞ: ð3Þ

According to Eq. (3), the effective dispersion νeff consists of
two terms: the dispersion of straight waveguide coupling
[ν0 ¼ ∂cðλÞ=∂λ] and the dispersion introduced by the AGF
(νAGF ¼ fcðλÞ=Γ½GðλÞ�gf∂Γ½GðλÞ�=∂λg). Trivial trajecto-
ries (straight or titled waveguides) produce z-independent
AGF [ΓðGÞ≡ 1], so that νAGF ¼ 0. In contrast, for non-
trivial trajectories with z-dependent AGF, the emergence of
an additional νAGF provides an opportunity to compensate
for the ν0 term to realize dispersionless coupling.
As a proof of concept, we consider a common sinus-

oidal trajectory, i.e., xðzÞ ¼ A sinð2πz=Pþ φÞ, where A,
P, and φ are the amplitude, period, and initial phase of
the trajectory, respectively. The sinusoidal trajectory
introduces a well-defined AGF with a simple mathemati-
cal form Gðλ; zÞ ¼ G0ðλÞ cosð2πz=Pþ φÞ, where G0ðλÞ ¼
4π2An0ðλÞ=Pλ is the amplitude of the AGF. Thus, the
effective coupling coefficient also has a well-defined
form ceff ¼ cJ0ðG0dÞ, and the dispersion νAGF is reduced
to [39]

νAGF ¼ cG0ðλÞd
λ

J1ðG0ðλÞdÞ
J0ðG0ðλÞdÞ

�
1 − ∂n0ðλÞ=∂λ

n0ðλÞ=λ
�
; ð4Þ

where J0ð1Þ is the zero(first)-order Bessel function of the
first kind. Interestingly, the coupling dispersion of straight
waveguides can be compensated by the AGF as long as
J0 and J1 have opposite signs. Figure 1(b) shows the J0
and J1 functions, and there indeed exists a sign reversal of
J0 and J1 in the red region. To be mentioned, though there
should be other J0J1 < 0 regions for higher G0 (corre-
sponding to larger bending amplitude A), the paraxial
approximation condition will not be satisfied there, so we
will not consider it at present (it will be discussed later).
We strictly calculate the νeff with respect to λ and A
[Fig. 1(c)]. For A ¼ 0, νeff > 0 and increases with λ. As
A increases, νeff decreases and becomes nearly zero for
A ∼ 1 μm (the black dashed curve represents νeff ¼ 0),
where the dispersion of coupling can be fully compensated
by the AGF. Figure 1(d) shows the effective coupling as a
function of wavelength for different A. Indeed, the wave-
length dispersion of coupling gradually becomes flat as
A increases [red curve in Fig. 1(d)], suggesting the
insensitivity of the coupling to the wavelength.
To be noted, here the insensitivity to wavelength

also indicates robustness against variations in structural

FIG. 1. (a) Schematics of the 1D waveguides with nontrivial
trajectories. (b) Zero-(J0) and first-order (J1) Bessel modulation
of the first kind. There is a sign reversal of J0 and J1 in the red
region, where the dispersion could be reduced by AGF. (c) The
coupling dispersion νeff as functions of λ and Awith d ¼ 600 nm,
P ¼ 10 μm. The black dashed curve represents νeff ¼ 0. (d)
Effective coupling as a function of λ for different A. From top to
bottom, A ¼ 0, 0.5, 1.0, and 1.5 μm. (e) ∂ceff=∂d as a function of
d and A with λ ¼ 1550 nm, P ¼ 10 μm. The black dashed curve
represents ∂ceff=∂d ¼ 0. (f) Effective coupling as a function of d
for different A.
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parameters (e.g., waveguide separation d). It can be seen
from the derivative of effective coupling ceff to d:

∂ceffðdÞ=∂d ¼ J0ðG0dÞ∂cðdÞ=∂d − J1ðG0dÞcðdÞG0: ð5Þ

Equation (5) reveals that the AGF can also introduce a
compensate term to reduce the structural sensitivity to d,
as long as J0 and J1 have opposite signs [red region in
Fig. 1(b)]. Figure 1(e) shows the calculated ∂ceff=∂d as
functions of d and A. It is found that the j∂ceff=∂dj
decreases as A increases and becomes almost zero for
A ∼ 1 μm. Figure 1(f) shows ceff as a function of d for
different values of A and the flat curve indeed appears at
A ¼ 1 μm [red curve in Fig. 1(f)], indicating the insensi-
tivity to waveguide separation.
Then, we would like to verify the theoretical findings on

Si-on-insulator (SOI) platform. The designed silicon wave-
guide is 400 nm wide and 220 nm thick, allowing a
fundamental mode at λ ¼ 1550 nm. The waveguides follow
sinusoidal profile with P fixed at 10 μm and A varying from
0 to 1 μm. The waveguide separation d varies from 600 to
750 nm (∼λ=2) for dense integration. A commercial finite-
element analysis solver (Comsol Multiphysics) is employed
for full-wave simulations. It should be mentioned that the
theoretical results are derived based on some conditions,
including the paraxial approximation, tight-binding approxi-
mation, and the high-frequency requirement. According to
our setup, we find that the high-density (d ∼ λ=2) integrated
system requires a large A=P value for adequate gauge
modulation, where the paraxial condition is not satisfied
[39]. Consequently, it should lead to deviations from the
theory. Figure 2(a) shows the theoretical (black curve) and
simulated (red curve) effective coupling as a function of
G0d, which both decrease to zero and then become negative.
Differently, the simulation gradually deviates from the
theory (Bessel function) as G0 increases (corresponding
to A increases) with an increasing negative discrepancy.
Nevertheless, the simulation reveals an identical physics that
the effective coupling switches from positive to negative
withG0d varies. Notably, this enlarged negative discrepancy
at the negative coupling regime leads to a stronger coupling
strength compared with the theoretical Bessel function,
which significantly provides choices of strong coupling
strength that give rise to short coupling distance comparable
to the straight waveguide cases.
Specifically, Fig. 2(c) shows the simulated coupling

coefficient as a function of wavelength for different values
of A with d ¼ 600 nm. The coupling strength drastically
changes by 0.103 μm−1 (from 0.036 to 0.139 μm−1) over
the 1400–1650 nmwaveband for straight waveguides (black
curve). However, when the AGF is introduced by nonzero
A, the change of coupling gradually slows down. In
particular, when A ¼ 0.9 μm (blue curve), the wavelength
dispersion becomes almost flat about−0.046 μm−1 with the
largest coupling deviations smaller than 0.011 μm−1 over

the same waveband, ∼1=10 of the conventional case.
Importantly, different values of dispersionless coupling cc
can be obtained [Fig. 2(b), red curve] with different critical
bending amplitude Ac [Fig. 2(b), black curve] by changing
the waveguide separation d.
In addition, we also simulate the effective coupling as a

function of d to illustrate the insensitivity to structural
parameters [Fig. 2(d), λ ¼ 1550 nm]. It is found that when
A ∼ 0.9 μm (blue curve), the coupling remains stable with
the largest deviation <0.0054 μm−1 despite a large varia-
tion in d (600–750 nm). As a comparison, for straight
waveguides (black curve), the coupling undergoes drastic
changes of ∼0.056 μm−1 (from 0.082 to 0.026 μm−1) for
the same variation of d, nearly ten times the case with AGF.
For a clearer comparison, we present the simulated prop-
agations of the optical field in the silicon waveguides
without (A ¼ 0) and with the AGF (A ¼ 0.9 μm,
P ¼ 10 μm, and φ ¼ 0) [Figs. 2(e) and 2(f)]. The optical
field can always couple to another waveguide at a distance
(∼34 μm) for curved waveguides even λ and d change.
However, the performance of the traditional waveguides
changes drastically.

FIG. 2. (a) Theoretical (black curve) and simulated (red curve)
effective coupling coefficients as a function of G0d. Note that in
the ideal theoretical case, G0 should be fixed at a small value to
satisfy the paraxial condition and only d varies. In the simu-
lation case, we fix d ¼ 600 nm, and G0d increases with G0.
(b) Critical bending amplitude Ac (black curve) and correspond-
ing dispersionless coupling cc (red curve) as a function of
waveguide separation d. (c) Simulated ceff as a function of λ
for d ¼ 600 nm. (d) Simulated ceff as a function of d for
λ ¼ 1550 nm. (e),(f) Simulated optical field dynamics in silicon
waveguides without and with AGF for different wavelengths (e)
and different waveguide separations (f).
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To verify our theoretical findings, we experimentally
fabricate AGF-based waveguide samples (A ¼ 0.9 μm,
P ¼ 10 μm, φ ¼ 0, d ¼ 600 nm, and 34.5 μm length)
[Figs. 3(a) and 3(b)] and conventional straight waveguide
samples for comparison [Fig. 3(c)] [39]. A near-infrared
laser (1400–1650 nm) is input to Port-I1 through a single-
mode fiber, then the transmission signals of Port-O1 and
Port-O2 are collected by a multimode fiber and connected to
a spectrometer (YOKOGAWA AQ6375) to measure the
output intensity (IO1 and IO2). A near-infrared camera
(Xeva-1.7-320) is used to image the light spots through a
microscope objective. To be mentioned, three grating
couplers with different periods (700, 800, 900 nm) are
used to overcome the bandwidth limitation of the grating
coupler [39]. The wavelength-sweep experiments are con-
ducted as individual experiments on different samples with
each of these three grating couplers, which only changes the
grating efficiencies and seldom changes the ratio data [39].
The experimentally measured output images for differ-

ent wavelengths (1450, 1500, 1550, 1600, and 1650 nm)
are shown in Fig. 3(d), and the coupling ratio data

[IO2=ðIO2 þ IO1Þ] are shown in Fig. 3(f). The light input
from Port-I1 couples to Port-O2 for AGF samples over the
160 nm band with the largest deviation <1 dB (∼200 nm
band in the simulation), and there is low insertion loss
(0.4–0.6 dB, reference to a straight single waveguide of the
same length) [39]. However, the 1 dB bandwidth for the
conventional sample is 38 nm in experiments and 57 nm in
simulation. In addition, we also design and fabricate a
sample with a 50∶50 splitting ratio (17.5 μm length), and
the experimental results are shown in Figs. 3(e) and 3(g).
The splitting performance is stable with respect to wave-
lengths for the AGF sample (∼130 nm for the �0.5 dB
bandwidth, most of the data points fall into this range). As
a comparison, the straight samples only work at the
designed 1550 nm and exhibit large wavelength depend-
ence (∼26 nm for the �0.5 dB bandwidth). To be men-
tioned, more than 50 samples are fabricated and over 36
valid samples are measured in Figs. 3(f) and 3(g). We
discard some invalid measurement data from samples
having serious structure flaws, such as the waveguide
breaking, grating coupler damage, etc. Furthermore, we
also fabricate and measure a set of AGF and straight
samples with different waveguide separations d. It is
shown that ∼130 nm variation of d can hardly affect the
performance of the AGF samples (deviation<1 dB), while
it loses the functions completely even for several ten
nanometers deviations for the straight ones [39]. This
robustness promises large tolerance to dimensional uncer-
tainties due to the fabrication, thus allowing scaling to
large circuits.
To further show the performance of AGF design in

integration, we connect the function units to form three-
level cascaded networks, as shown in Fig. 4(a). When the
light is input from Port-I1, it is routed to O8 [Fig. 4(b)] or
equally distributed to all ports [Fig. 4(c)] for the AGF
directional coupling and splitting networks, respectively,
within a large wavelength range (1400–1600 nm).
According to experimental data [Figs. 4(f) and 4(g)],
the coupling ratios of AGF cascaded samples stay near the
preferred values (0 dB for directional coupling and −9 dB
for splitting networks) with the largest deviation <6 dB
over a bandwidth of nearly 200 nm. For comparison
results of straight-waveguide counterparts, the intensities
of eight output ports are chaotic as the wavelength
changes [Figs. 4(d) and 4(e)]. There is a large discrepancy
in the coupling ratio data with wavelengths varying
(>21 dB) and they do not perform well even at designed
1550 nm (∼3.58–5 dB). These results show the potential
of AGF designs in large-scale and dense photonic inte-
gration. We provide more information including the
comparisons with literature and broadband elimination
of crosstalk among dense waveguides by AGF in [39].
In conclusion, we have developed a new strategy to

control the coupling dispersion among optical waveguides
by artificial gauge field, which is implemented by

FIG. 3. (a) Microscope image of the samples on a silicon
platform. (b),(c) Enlarged scanning electron microscopy images
of AGF (b) and conventional (c) samples. (d),(e) Experimentally
detected output scattering fields from Port-O1 and Port-O2 in AGF
and conventional samples with different wavelengths (1450, 1500,
1550, 1600, and 1650 nm) for directional coupling (d) and 50∶50
splitting (e) functions. (f) Experimentally measured coupling ratio
of Port-O2 as a function of wavelength for directional coupling,
where the 1 dB bandwidth was marked. The error bars represent
the deviations of the multiple samples measured. (f) Correspond-
ing results for 50∶50 splitting.
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elaborating curved trajectory of waveguides and works out a
flat coupling dispersion (dispersionless) in certain broad-
band. Based on the AGF waveguides, we successfully
realize robust directional waveguide coupling and splitting
with a bandwidth of 160 nm, whose overwhelming advan-
tages are further experimentally demonstrated in three-
cascaded networks as compared with traditional waveguide
counterparts. Note that although we start the analysis from
the paraxial approximation, it is well proved in later experi-
ments that this condition is not necessary. This work shows
the powerful capability of the AGF for dispersion control of
waveguide coupling, which opens a new avenue for robust
and broadband photonic integrations.
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