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A mechanically compliant element can be set into motion by the interaction with light. In turn, this light-
driven motion can give rise to ponderomotive correlations in the electromagnetic field. In optomechanical
systems, cavities are often employed to enhance these correlations up to the point where they generate
quantum squeezing of light. In free-space scenarios, where no cavity is used, observation of squeezing
remains possible but challenging due to the weakness of the interaction, and has not been reported so far.
Here, we measure the ponderomotively squeezed state of light scattered by a nanoparticle levitated in a
free-space optical tweezer. We observe a reduction of the optical fluctuations by up to 25% below the
vacuum level, in a bandwidth of about 15 kHz. Our results are explained well by a linearized dipole
interaction between the nanoparticle and the electromagnetic continuum. These ponderomotive correla-
tions open the door to quantum-enhanced sensing and metrology with levitated systems, such as force
measurements below the standard quantum limit.
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Cavity-enhanced light-matter interaction is a central
paradigm in condensed-matter physics [1], especially in
the fields of cavity and circuit quantum electrodynamics
[2,3]. More recently, researchers in cavity optomechanics
have employed similar techniques in order to measure and
control the motion of solid-state systems, from nano-
mechanical resonators to kilogram-scale mirrors [4].
Electromagnetic resonators also come with drawbacks,

such as bandwidth limitations and reduced coupling effi-
ciencies due to mode mismatching [5]. To circumvent these
problems, there exist alternative coupling schemes that
make use of traveling electromagnetic fields either in
waveguides or directly in free space, rather than in cavities.
In the context of optomechanics, these schemes have been
studied with Brillouin and Raman scattering from bulk
acoustic waves [6,7] and optical phonons [8,9], and in
levitodynamics with optical tweezers [10–12].
The latter scenario is an example of a free-space system:

here, an optical trap is formed for a dielectric nanoparticle
by tightly focusing an intense laser field. The nanoparticle
imprints a position-dependent phase to the scattered laser
photons. Interferometric techniques allow one to retrieve
this phase, effectively realizing a displacement measure-
ment. At the same time, the nanoparticle recoils after a
photon scattering event, which occurs at random times.
This is a form of quantum backaction and generates
fluctuations in the nanoparticle position. Recent experi-
mental advances have made it possible to access a regime in
which the quantum backaction is the dominant source of

position fluctuations, which are efficiently recorded in
phase measurements [13,14]. These advances enabled
measurement-based ground-state cooling of the motional
state of nanoparticles in free-space levitodynamics [15,16].
In addition to ground-state cooling, this quantum regime

of measurement enables the generation of quantum corre-
lations in the mode of the scattered light. The nanoparticle
motion correlates the optical amplitude and phase quad-
ratures, which are responsible for the quantum backaction
and measurement imprecision, respectively. If strong
enough, these correlations may lead to a reduction of the
fluctuations of an optical quadrature below the level of
vacuum fluctuations, a phenomenon known as ponder-
omotive squeezing [17,18]. In cavity optomechanics, this
quantum squeezing has been observed with ultracold atoms
[19], optomechanical photonic crystals [20], membrane
resonators [21–23], and crystalline cantilevers [24]. All
these experiments are based on a cavity-enhanced opto-
mechanical interaction. To date, no observations of ponder-
omotive squeezing in free-space optomechanical systems
have been reported.
In this work, we measure squeezing by 25% below the

vacuum noise in the light scattered by a levitated nano-
particle in free space. We fully reconstruct the state of
the squeezed optical mode by homodyne tomography
[25–27]. Furthermore, we explain our experiments with
quantum optics theory, which assumes a linearized dipole
interaction between the nanoparticle motion and the
electromagnetic field.
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Our experimental setup is shown in Fig. 1(a) and consists
of a spherical silica nanoparticle of 100 nm diameter
trapped in the focus of an optical tweezer. The laser
(wavelength 1550 nm, power 1.2 W) is linearly polarized
along the x direction and propagates along the direction z.
In the following, we will only consider the motion along
this longitudinal direction (z axis). We form the optical
tweezer by strongly focusing the laser by an aspheric lens
that is located inside a 4 K cryostat. More details can be
found in Ref. [16]. Once cooled down, the consequent
cryogenic pumping mechanism evacuates the volume
around the optical trap to a pressure below 10−9 mbar.
At this pressure, the quantum backaction from the photon
scattering dominates over the motional decoherence
induced by collisions with the surrounding gas molecules
[13]. We perform shot-noise limited homodyne detection to
monitor the field scattered by the nanoparticle (scattered
power Psc ≈ 2 μW), characterized by the amplitude and
phase quadraturesXout and Yout, respectively [16]. To do so,
we overlap the scattered light with a strong coherent local
oscillator beam (LO) with relative phase θ. We optimize
the LO Gaussian transverse profile to match the one of the
scattered light in the backward direction, such that the
detection efficiency ηd of the longitudinal motion is
maximized [28]. We model the losses and finite detection
efficiency with a fictitious beam splitter of transmissivity ηd
in front of the detector [29]. The homodyne photocurrent
becomes iθ ¼ ffiffiffiffiffi

ηd
p

Xθ
out þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηd

p
Xν, where Xν is the

amplitude quadrature of an uncorrelated field in the vacuum
state entering from the dark port of the fictitious beam

splitter. In the equation for the photocurrent, we have
introduced the rotated quadrature of the scattered field

Xθ
out ¼ cosðθÞXout þ sinðθÞYout: ð1Þ

In the experiment, we split the scattered field in two parts,
as shown in Fig. 1(a). A small fraction (10%) is used to
perform a homodyne phase measurement to feedback-cool
the particle motion [16]. The remaining part (90%) is sent
to a different, out-of-loop homodyne receiver. This is the
main detector of our experiments and we use it to measure
ponderomotive squeezing. For this detector, we stabilize
its LO phase, θ, to any value in the range ½0; π� to measure
the corresponding optical quadrature [30].
In Fig. 1(b), we show the power spectral density (PSD)

of the homodyne photocurrent, Sθii, for a phase quadrature
measurement (θ ≈ π=2) [47]. The flat noise floor in the
spectrum arises from the vacuum noise of the probing light
field. On top of this background stands a Lorentzian peak,
which represents the nanoparticle motion. By fitting the
PSD with a Lorentzian function, we extract the mecha-
nical resonance frequency Ωm=ð2πÞ ¼ 73.25 kHz and the
damping rate γm=ð2πÞ ¼ 40 Hz. This damping rate
results from the mild feedback cooling exerted on the
nanoparticle.
We now measure the PSD as we change the angle θ in

the range ½0; π� [30]. This reduces the sensitivity of our
measurements of the particle motion, which is solely
contained in the phase quadrature Yout. To characterize
this sensitivity, we exert an off-resonant (90 kHz) sinus-
oidal force on the nanoparticle. We exert this force electri-
cally, which is possible thanks to the net charge carried by
the nanoparticle [16,48]. The driven motion appears in
the homodyne photocurrent as a sinusoidal oscillation at
90 kHz. We record its amplitude for different angles θ, as
shown in Fig. 1(c). The maximum (minimum) response is
shifted from the phase (amplitude) quadrature at π=2 (π) by
∼0.05π. This deviation is caused by an additional, weak
reflection of the tweezer light copropagating backward with
the scattered light toward the homodyne detector.
In Fig. 2, we compare two PSDs acquired close to the

amplitude quadrature, at θ ≈ 0 (red) and at θ ≈ 0.9π
(green), with one at the phase quadrature θ ≈ π=2 (blue).
The former two show an asymmetric Fano line shape rather
than a Lorentzian one, suggesting interference between a
broadband background, generated by both optical quad-
ratures, and a resonant process, generated by the mechani-
cal motion driven by the optical amplitude quadrature. The
measured spectral noise lies below the shot noise within
about 15 kHz bandwidth, with a maximum noise reduction
of 25%. This is the manifestation of ponderomotive
squeezing of the scattered light field [17,18].
The backscattered field contains infinitely many modes

oscillating at every frequency Ω. Because experimentally
we can only access time traces of finite length, we can
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FIG. 1. Free-space levitated optomechanics. (a) Experimental
setup. (b) Power spectral density (PSD) of a phase quadrature
measurement, normalized to the shot-noise (sn) background.
(c) Sensitivity to mechanical motion, normalized to its maximum.
The sensitivity is measured as the detector response to an off-
resonant sinusoidal force acting on the particle. The light blue
line is a sinusoidal fit.
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extract realizations of so-called “temporal modes” rθ;Ω,
defined as [49]

rθ;Ω ¼ 1ffiffiffiffi
T

p
Z

T=2

−T=2
dt eiΩtiθðtÞ; ð2Þ

which in the spectral domain corresponds to a frequency
bin centered at Ω and with a width 1=T. In our experiment,
we choose T ≈ 8 ms to be larger than the correlation time
1=γm in order to consider statistically independent realiza-
tions. Note that γm corresponds to the decay rate of
“classical” correlations, as opposed to the much faster
decay of quantum correlations due to decoherence. In order
for the realizations of rθ;Ω to be independent, however, both
classical and quantum correlations need to decay, hence our
choice of the time window T. For each angle θ in the set
shown in Fig. 1(c) and for each frequency Ω of interest, we
extract realizations of the temporal mode in Eq. (2).
We collect an ensemble of ∼104 realizations for both the

real and imaginary part of rθ;Ω, and then we compute their
histograms. We repeat this procedure for different angles θ.
The histograms correspond to marginals of the Wigner
quasiprobability distribution WðX; YÞ along the angle θ
with respect to the X axis [26,50,51]. To reconstruct the
functionWðX; YÞ, we apply the inverse Radon transform to
the set of histograms [30]. In Fig. 3, we show the
experimentally reconstructed Wigner functions for two
modes centered at Ω=ð2πÞ ¼ 70.1 kHz in (a) and
77.1 kHz in (b), for which we have the strongest corre-
lations. Since the optical states are Gaussian, the Wigner
function is fully determined by the quadratures’ means and
covariance matrix. The latter can be simply estimated from
three PSDs at different angles [30]. We apply this idea to
estimate the covariance ellipses shown in Fig. 3. The

covariance ellipse from the scattered light (solid orange
line) is narrower than the one of the vacuum state (dashed
light gray line) along some directions, a distinctive finger-
print of squeezing. We also notice that the angle of
squeezing changes with the frequency Ω of the temporal
mode. The minor axis of the covariance ellipse is rotated by
−8° with respect to the X axis for the mode at 70.1 kHz and
by 30° for the one at 77.1 kHz.
Light squeezing via the motion of a mechanical system

induced by quantum backaction is known as ponderomo-
tive squeezing, a phenomenon that has been recently
observed in optomechanics [19–24]. Therein, the squeezed
optical mode is determined by the cavity resonance driven
by the laser and interacting with the mechanical oscillator.
In contrast, in our case the nanoparticle simultaneously
interacts with all the modes of the electromagnetic con-
tinuum due to the absence of a cavity. We analyze our
experiments with a theoretical framework, which assumes a
linearized dipolar light-matter interaction [15,52–55]. The
longitudinal nanoparticle motion interacts with a set of
plane waves of the electromagnetic field (similarly for the
motion along other directions). This combination defines a
distinct optical mode, the amplitude and phase quadratures
of which we label Xin and Y in [30]. The spatial distribution
of this mode, which we term “interacting mode,” has been
first derived in Ref. [28], where it played the role of
information density patterns in an optimal position meas-
urement of a dipolar scatterer.
With the use of the interacting mode and in the interaction

picture with respect to the free field, the interaction
Hamiltonian of our system is Hint¼−

ffiffiffiffiffiffiffiffiffiffiffi
4Γqba

p
Xinq, where

Γqba is a rate characterizing the interaction strength, and q is
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FIG. 3. Homodyne tomography of ponderomotively squeezed
light. (a),(b) Reconstructed Wigner functions of modes centered
at, respectively, Ω=ð2πÞ ¼ 70.1 kHz and 77.1 kHz. The solid
orange (dashed light gray) line indicates the covariance ellipse
with 2 standard deviations of the squeezed (vacuum) state.
Above and aside the Wigner functions we show the marginals
distributions, ρ, for X and Y, respectively. Blue dots are data;
the dark gray lines are theoretical predictions [30]. The optical
quadratures are normalized such that the vacuum noise standard
deviation is 1=

ffiffiffi
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FIG. 2. Ponderomotive squeezing. Enlarged view of three
different PSDs, at the phase quadrature (blue) and close to the
amplitude one (red and green). The solid light-colored lines are
the results of the fits to Eq. (5). The gray trace is the measured
shot noise. We have subtracted from the PSDs a small classical
noise contribution originating from the LO [30].
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the position operator normalized to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmΩmÞ

p
, withm the

nanoparticle mass. After including the harmonic potential
generated by the optical tweezer, the Heisenberg equation of
motion for q becomes

q̈þ Ω2
mqþ γm _q ¼ Ωm½ξðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
4Γqba

q
XinðtÞ�; ð3Þ

where we introduced the damping rate γm that accounts for
the surrounding gas and for the feedback cooling. The term
ξ is a white thermal force that satisfies the correlation
hξðtÞξðt0Þi ¼ 2γmðn̄þ 1=2Þδðt − t0Þ, where n̄ is the average
phonon occupancy [56,57]. The last term in Eq. (3) is the
quantum backaction exerted on the particle by the interact-
ing mode. At the same time, the nanoparticle motion affects
the quadratures (Xin, Y in) of the interacting modes. The
resulting quadratures (Xout, Yout), labeled output, are derived
from the input-output relations [58]

XoutðtÞ ¼ XinðtÞ; ð4aÞ

YoutðtÞ ¼ Y inðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffi
4Γqba

q
qðtÞ: ð4bÞ

The output quadratures of Eq. (4) are the quantities that
we measure in our experiments and that appear in Eq. (1).
From Eqs. (3) and (4), we calculate the following PSD for
the homodyne photocurrent:

SθiiðΩÞ ¼ 1þ S−1imp;θ jχðΩÞj2StotFF þ 2SθcðΩÞ; ð5Þ

where we normalized the spectrum to the background noise
Simp;θ (first term on the right-hand side). The second term
arises from the mechanical displacement, with the suscep-
tibility χðΩÞ ¼ Ωm=ðΩ2

m −Ω2 − iγmΩÞ and the total force
spectrum StotFF ¼ 2½Γqba þ γmðn̄þ 1=2Þ�. The sensitivity to
the motion is represented by S−1imp;θ ¼ 8ηdΓqbasin2ðθÞ,
which is shown in Fig. 1(c). Finally, the last term in
Eq. (5) represents the frequency-dependent correlations
between the background and the displacement noise
SθcðΩÞ ¼ 2ηdΓqbaRe½χðΩÞ� sinð2θÞ. These correlations are
responsible for the asymmetric line shape in Fig. 2 and for
the frequency-dependent squeezing angle in Fig. 3.
The figure of merit for the degree of ponderomotive

squeezing is the measurement efficiency ηmeas ¼ Γmeas=Γtot,
where we have introduced for convenience the total
decoherence rate Γtot ¼ Γqba þ γmðn̄þ 1=2Þ and the meas-
urement rate Γmeas ¼ ηdΓqba. The correlations lead to
significant ponderomotive squeezing when the measure-
ment rate approaches the total decoherence rate, that is
ηmeas ∼ 1. In this limit, the minimum value of the spectrum
approaches Sθii ≈ 1 − ηmeas close to the resonance frequency
[22]. We use Eq. (5) to simultaneously fit all the measured
spectra, some of which are shown in Fig. 2 [30]. We extract
the rates Γtot=ð2πÞ ¼ 5.0 kHz and Γmeas=ð2πÞ ¼ 1.4 kHz,

yielding a measurement efficiency of ηmeas ¼ 0.28. These
results are consistent with what we previously reported in
Ref. [16]. These rates allow us to calibrate the displacement
measurements in units of zero-point motion. This calibra-
tion technique relies only on the ponderomotive correla-
tions present in the spectra. These spectra, in turn, are
calibrated against the optical shot noise, which is easy to
quantify experimentally. The estimated parameters can be
also used to compute the theoretical Wigner functions
for the modes at Ω=ð2πÞ ¼ 70.1 kHz and 77.1 kHz, whose
X and Y marginals are shown in Fig. 3. Both the fits
of the spectra and the marginals extracted from the
theoretical Wigner functions are in good agreement with
the measurements.
We have experimentally observed squeezing of light

scattered by a levitated nanoparticle and we have fully
characterized the optical state with homodyne tomography.
We have measured a reduction of the optical quantum
fluctuations by 25%, which is due to the large measurement
efficiency featured by our system. Notably, we observe
ponderomotive squeezing from a single particle in free
space, without the need of an optical resonator to enhance
the optomechanical coupling. We model our experiments
by using a linearized dipolar treatment of the light-matter
interaction.
The ponderomotive correlations present in the scattered

field can be readily exploited to provide quantum enhance-
ments in force sensing applications [59], such as gravita-
tional wave detectors based on levitated sensors [60], in
testing fundamental force laws [61], and in the search for
dark matter [62].
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