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We show that spatial resolved dissipation can act on d-dimensional spin systems in the Ising universality
class by qualitatively modifying the nature of their critical points. We consider power-law decaying spin
losses with a Lindbladian spectrum closing at small momenta as ∝ qα, with α a positive tunable exponent
directly related to the power-law decay of the spatial profile of losses at long distances, 1=rðαþdÞ. This yields
a class of soft modes asymptotically decoupled from dissipation at small momenta, which are responsible
for the emergence of a critical scaling regime ascribable to the nonunitary counterpart of the universality
class of long-range interacting Ising models. For α < 1 we find a nonequilibrium critical point ruled by a
dynamical field theory described by a Langevin model with coexisting inertial (∼∂2t ) and frictional (∼∂t)
kinetic coefficients, and driven by a gapless Markovian noise with variance ∝ qα at small momenta. This
effective field theory is beyond the Halperin-Hohenberg description of dynamical criticality, and its critical
exponents differ from their unitary long-range counterparts. Our Letter lays out perspectives for a revision
of universality in driven open systems by employing dark states tailored by programmable dissipation.
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Introduction.—The search for nonequilibrium criticality
in driven open quantum systems has become an exciting
research frontier, both for its fundamental relevance in
statistical mechanics and for the variety of atomic molecu-
lar and optical physics platforms where it can be concretely
explored [1–19]. The aim is the discovery of universality
classes which cannot be encompassed by established
classifications of dynamical criticality [20–23] nor can
be related to out-of-equilibrium scaling in isolated systems
[24–36], where, in sharp contrast, both energy and total
number of particles are conserved. A common obstruction
against the realization of this program is the occurrence of
an effective thermal behavior for the soft modes relevant at
the critical points of driven dissipative systems [37–42]:
although the full momentum distribution of the nonequili-
brium steady state manifestly breaks detailed balance,
low momenta can thermalize at an effective temperature
set by the interplay of drive, noise, and losses. This forces
several instances of driven open criticality to fall into
known equilibrium universality classes [20,43], with few
exceptions represented by the appearance of novel inde-
pendent anomalous exponents associated with decoherence
[44–46], or by exotic features as nonequilibrium multi-
critical points [47].
The culprit for effective thermalization is a noise

variance (dictated by dissipation) with a nonvanishing
gap at small momenta and/or frequencies, which sets the
temperature of infrared modes in several circumstances of
interest [37–41,43,44,48]. Softening such gap and allowing
the noise to scale down to zero at small momenta is the
route for instances of driven open criticality without

thermal counterpart. In quadratic fermionic models
[49,50] or interacting quantum wires [51–53], dissipation
with nonlocal support in real space acting on neighboring
sites in a correlated fashion [54] has been employed to
achieve nonequilibrium quantum criticality. In these cases
the noise variance vanishes at infrared momenta, and it
exposes a set of modes asymptotically decoupled for q → 0
from the decohering and thermalizing effect of the envi-
ronment. These forms of nonlocal dissipation can steer a
system into a many-particle dark state with nontrivial
quantum correlations—a state preparation protocol with
interesting perspectives for applications in quantum infor-
mation and technology [55–66].
In this Letter, we consider spin losses with a controllable

spatial profile decaying algebraically at long distances
[67–70]. Their Lindbladian spectrum scales with momen-
tum softly as ∝ qα in the infrared; the tunability of α allows
us to explore a dissipative analog of the universality class of
long-range interacting quantum magnets. Our results are
based on renormalization group (RG) and therefore perti-
nent to a whole family of spin models distinct by RG
irrelevant perturbations at the Ising critical point. Modern
cavity QED quantum simulators [68,71–73] in the regime
of strong cavity loss, have the potential to expose uncon-
ventional forms of dynamical criticality, since they can
imprint on atomic ensemble decay channels with tunable
spatial profiles [70]. This is in sharp contrast with previous
contributions on driven open criticality where the structure
of dissipation supporting dark modes is not flexible and
given by the specific implementation at hand [52,55,57,59].
In particular, we discuss here the instance of critical spin
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ensembles subject to long-range spatial emission, whose
universal properties are ruled by a Langevin theory [20,46]
where inertial (∝ ∂

2
t ) and frictional (∝ ∂t) kinetic coeffi-

cients coexist and with a gapless driving noise scaling
proportionally to qα in the infrared. Upon tuning α, one can
control the degree of RG relevance of the operators
necessary for a consistent description of these novel critical
states, and interpolate among different universality classes.
Ising criticality with nonlocal losses.—We consider a

quantum Ising chain in d dimensions

H ¼ −
X
hi;ji

σxi σ
x
j þ h

X
i

σzi ; ð1Þ

subject to a spin loss Lindblad channel which is nonlocal
and shaped by a spatial structure factor γi;j:

_ρ ¼ i½ρ; H� þ
X
i;j

γi;j

�
σ−i ρσ

þ
j −

1

2
fσþj σ−i ; ρg

�
: ð2Þ

The open quantum system in (1) and (2) is not exactly
solvable and, even with state-of-art numerics, dynamics
could be extracted only for small system sizes and
intermediate times. Instead, here we rely on nonequilibrium
RG to inspect the long-distance or long-time scaling
properties of the system at criticality. In this regard, any
RG irrelevant perturbation at the Ising critical point in (1)
(e.g., short-range spin-spin interactions along the ẑ direc-
tion) will not affect our results, which are therefore
pertinent to the whole set of spin models belonging to
the Ising universality class. Correlated spin losses as in
Eq. (2) can be realized in cavity QED [70] or photonic
crystal waveguides [67,68], where tunable interactions and
losses between pairs of spins at arbitrary distances can be
controlled through a combination of spatial-dependent
energy level shifts and external pump fields [70]. The
former typically result from a background magnetic field
gradient coupling to levels in a hyperfine manifold, and
they give spatial resolution to dissipation, while a Raman
drive with several sidebands enables control on the func-
tional form of γi;j, which can be made translational
invariant, γðrÞ with r ¼ ji − jj.
In the following we analyze the impact of a class of γðrÞ,

which scales asymptotically as an inverse power law of r,
on Ising critical systems [i.e., γðrÞ ∝ 1=rαþd for large r,
cf. with Fig. 1]. The details of the implementation of
γðrÞ are contained in Refs. [68,70] (see also [74]).
Diagonalizing Eq. (2) in Fourier space with this shape
of γðrÞ, we obtain for the decay rate of the infrared modes
the expression Γq ∼ Γ1qα. These infrared modes are
dark, i.e., asymptotically decoupled from dissipative effects
(Γq vanishes as q → 0). Following the analogy with
criticality in long-range interacting spin systems where
instead the Hamiltonian spectral gap scales as m ∼ qα

[75–77], we can interpret the instance of criticality

inspected in this Letter as a nonunitary counterpart of
critical long-range interacting Ising systems. This analogy
is further supported by the fact that the anticommutator in
the Lindblad equation (2) can be regarded as a non-
Hermitian long-range interaction term [70]. We notice that
the shape of γðrÞ at short or intermediate distances is
inconsequential for our results which are relevant for soft,
infrared modes at criticality. Therefore, our analysis applies
to a broad class of spatial profiles γðrÞ, provided they entail
the infrared scaling of the Lindbladian spectrum mentioned
above, Γq ∼ Γ1qα (cf. with the inset in Fig. 1). In this
respect, our setup also extends previous instances on
preparation and criticality of open quantum systems with
dark states in cold atoms or quantum optics platforms,
where, in contrast, the shape of nonlocal losses is not
tunable [49–52,57]. For the case discussed in this Letter,
the exponent α can be flexibly varied by a proper choice of
the amplitudes of the Raman sidebands (see note [73], or
for more details Ref. [70]). Notice that the α ¼ 0 case will
not display any interesting instance of dissipative criticality
since it does not support dark states (Γq constant for
q → 0).
Canonical scaling with long-range losses.—We now

map the lattice model in Eq. (2) into a long wavelength
nonequilibrium field theory [43,78]. In particular, we will
discuss how the effective field theory governing non-
equilibrium critical behavior for α < 1 is ascribable to a
Langevin model [20,46] with coexisting inertial and fric-
tional terms, driven by a gapless noise ∝ qα at small
momenta. Following the usual prescription [79–81] we
map the spin operators in terms of bosons σ−i → ai and
σzi → 2a†i ai, and we implement the hard-core constraint
with a large on-site nonlinearity a†i a

†
i aiai. By taking the

continuum limit and coarse graining over short wave-
lengths [40,79–81], the Ising interaction in Eq. (1) yields
a second derivative in space within a leading order
derivative expansion (Kq2 in momentum space), while
the nonlinearity yields the usual φ4 potential. As detailed in
Refs. [40,43,82], the quantum master equation for an Ising
model with losses (2) can be mapped into a Keldysh path
integral in terms of the classical and quantum components
of the real field, φc=qðQÞ, which in Fourier space,
Q ¼ ðq;ωÞ, reads

FIG. 1. Schematic portrait of a spin lattice subject to nonlocal
losses, γi;j, acting on pairs of spins at positions i and j.
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SG ¼
Z
Q
ðφcð−QÞ;φqð−QÞÞ

�
0 PA

PR PK

��
φcðQÞ
φqðQÞ

�
ð3Þ

with

PR=A ¼ −ω2 − 2Kq2 ∓ 2iΓqωþm − Γ2
q=2;

PK ¼ iΓq ≡ iðΓ0 þ Γ1qαÞ; ð4Þ

the retarded or advanced and Keldysh inverse Green’s
functions [78]. The former contain spectral information on
the excitations: in our case, the distance from the critical
point, m, and the decay rate of the infrared modes, Γq. The
Keldysh component of the quadratic action PK is instead
directly related to the momentum Fourier transform of the
noise variance [43].
In Γq we have included a constant term Γ0 which takes

into account the spontaneous emission of the spins into free
space and which is often the main adversary in schemes
implementing dissipative engineering with dark states
[83,84]. Its detrimental role is to locally measure the atoms
and therefore suppress the entangling effect of nonlocal
dissipation at long times (or small wave vectors). We will
inspect the critical properties of our model in the regime
where Γ1qα ≫ Γ0 and therefore PK scales effectively as qα,
and, at the same time, also the retarded or advanced sectors
become gapless, PR=A ∼ q2α, since we tune the spectral
mass to zero as well. The former can be implemented in the
RG scheme via the scaling ansatz Γ0 ∼ Γ1qα (see also
Ref. [85]). As pointed out in [86–88] weak dissipation can
expose novel critical behavior for a long temporal window
before thermalizing effects set it. In our setup, this is
mirrored by the fact that for q ≪ ðΓ0=Γ1Þ1=α incoherent
emission takes over, and the Gaussian action in (3) reduces
to a Langevin action with Γq ≃ Γ0 and no ω2 term which
notoriously thermalizes [20,89]. This crossover is analo-
gous to the suppression of equilibrium quantum criticality
at distances larger than the de Broglie thermal length
[21–23].
Approaching criticality (m → 0) and for Γ0 → 0, we can

adopt the following canonical scaling ansatz [46,90] for
the dynamical critical exponent z controlling the relative
scaling of frequency and momentum [89]: ω ∼ qz, with
z ¼ α. This results in the terms ∝ ωΓq and ∝ ω2 both
equally scaling like ∼q2α in the infrared. This is in contrast
to relaxational Langevin models, where the inertial term
proportional to the second derivative in time (∼ω2) is
subleading compared to the frictional first order time
derivative (∼ω). Therefore, we recover a scalar dynamical
field theory with coexisting inertial and frictional kinetic
coefficients, driven by a gapless Markovian noise, which is
a model beyond the Halperin-Hohenberg classification
[20]. An effective field theory resembling some of these
features has recently appeared in [86,88]. As a nontrivial
extension here we encompass a family of RG fixed points

upon tuning the exponent α of the soft Langevin noise.
This results in corrections not only to dynamical critical
exponents as in [86,88] but also to static ones, as we discuss
in the following.
We now focus on kinetic coefficients proportional to

spatial derivatives. At the level of canonical power count-
ing, there is a threshold value α < 1 at which the second
derivative in space (∝ Kq2 term) is subleading in the
infrared compared to the Γ2

1q
2α fractional derivative result-

ing from “long-range” losses in the spectral sector (PR=A).
This should be contrasted with critical long-range inter-
acting Ising models where such threshold is set at α ¼ 2

[75–77,91] besides small corrections resulting from anoma-
lous dimensions [92–98]. These different thresholds
occur because Hermitian long-range interactions compete
with Kq2 through a qα term in the R=A sector (see
Refs. [75–77,91]), while non-Hermitian ones through
q2α terms resulting from ωΓq and Γ2

q [cf. with Eq. (4)].
We notice that the RG procedure generates only analytical
terms and thus cannot renormalize the terms scaling with
the exponent α (see also Refs. [75–77]). The only term
which can acquire an anomalous dimension is the kinetic
coefficient of the inertial term (∼ω2), as we will further
discuss below. This makes unviable a fine compensation of
the anomalous dimensions of the retarded and Keldysh
sectors, which would signal, whenever occurring, effective
infrared thermalization [44,85]. Therefore, the RG fixed
point discussed in the following explicitly breaks fluc-
tuation-dissipation relations and cannot have an equilib-
rium counterpart, distinctly from other instances of
nonequilibrium open criticality [37–42]. We now study
the critical regime m → 0 for α < 1.
RG fixed point and criticality for α < 1.—We will now

complement the Gaussian action in Eq. (3) with nonlinear
terms following the canonical power counting just dis-
cussed. For α < 1, we have PR=A ∼ q2α and PK ∼ qα, with
canonical scaling dimensions for the classical and quantum
fields φc ∼ qd=2−α, φq ∼ qd=2, and accordingly a lower
critical dimension of dl ¼ 2α. Below the upper critical
dimension du ¼ 4α the classical nonlinear term
ðuc=4!Þφ3

cφq is relevant. The next RG leading nonlinearity
appears at d < 3α where the additive noise term
iðκ=2Þφ2

cφ
2
q and the sextic term ðλ=5!Þφ5

cφq are both RG
relevant. Quantum vertices with higher powers of quantum
fields are always irrelevant hinting at the semiclassical
nature of the fixed point, and marking a difference with
previous studies on quantum criticality induced by dark
states [49–52]. Notice that similarly to the long-range
interacting model A of the Halperin-Hohenberg classifica-
tion [99] we have a dynamical critical exponent z ¼ α, but
different lower and upper critical dimensions due to the
gapless nature of the noise, suggesting that the scaling
regime studied here belongs to a different universality class.
Similarly there are neat differences with the canonical
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power counting of the zero-temperature critical long-range
Ising model, where z ¼ α=2.
In order to find the interacting fixed point, we run a one-

loop resummed RG on the effective potential including
relevant nonlinearities [43,80,100]. Technical details are
reported in the Supplemental Material [101]. We employ a
sharp cutoff in momentum space k < q < Λ where k is the
running RG scale and Λ an uv regulator. In the following
we parametrize the flow of the couplings in terms of
the RG time t ¼ ln k. We first consider a leading order
ϵ expansion, right below the upper critical dimension
ϵ≡ du − d ≪ 1 (where du ¼ 4α). We follow the canonical
rescaling discussed above, m̃ ∼m=k2α, Γ̃0 ∼ Γ0=ðΓ1kαÞ,
and ũc ∼ uc=k4α−d, and we find from the following rescaled
beta functions:

∂tm̃ ¼ −2αm̃þ ũc½−2m̃þ ð1þ Γ̃0Þ2�
4ð1þ Γ̃0Þ6

;

∂tũc ¼ −ϵũc −
3ũ2c

2ð1þ Γ̃0Þ6
; ∂tΓ̃0 ¼ −αΓ̃0; ð5Þ

a Wilson-Fisher (WF) fixed point at ðm̃�; Γ̃�
0; ũ

�
cÞ ¼

½−ϵ=ð12αÞ; 0;−2ϵ=3�, with a correlation length critical
exponent ξ ∼m−ν, ν ¼ 1=ð2αÞ þ ϵ=ð12α2Þ. This fixed
point has an additional unstable RG direction correspond-
ing to perturbations around the fixed point value Γ̃�

0 ¼ 0,
in agreement with the requirement to fine-tune the
Lindbladian gap (Γ0 → 0) in addition to the closing of
the spectral one (m → 0). This is in full analogy with the
RG relevance of temperature at equilibrium quantum
critical points, which is as well responsible for the onset
of an additional RG unstable direction [21–23]. At Oðϵ2Þ
we find z ≃ αþ ϵ2=½24ð1þ 4α2Þ� following similar calcu-
lations performed for critical Langevin models [46,77].
In Eqs. (5) the flow of Γ̃0 is solely governed by its

canonical dimension. To find a nontrivial WF fixed point
for Γ0, we need the multiplicative noise iðκ=2Þφ2

cφ
2
q to be

RG relevant. As discussed above, this occurs for α > d=3,
giving to the Gaussian noise sector, PK , a one-loop dressing
proportional to ∼κ

R
Q GKðQÞ. For consistency with

RG relevance we have also to include the sextic vertex
∝ λ (see Refs. [101] for details). By evaluating the one-
loop resummed RG flow at d ¼ 2 and α ¼ 0.7, we find a

WF fixed point ðm̃�; Γ̃�
0; ũ

�
c; κ̃�; λ̃�Þ ¼ ð0.04; 0.23; 2.53;

−1.98;−0.93Þ with still two unstable directions; the one
associated to the spectral mass yields ν ≃ 0.71. Loop
corrections to Γ0 in the vicinity of this fixed point renorm-
alize the condition Γ0ðkÞ ≃ Γ1kα for suppression of the dark
mode from incoherent spontaneous emission. Following a
calculation contained in Ref. [85] (summarized also in
[101]), we find that at distances larger than the inverse of
k� ≃ 10−6ΛG, the novel scaling is superseded by a conven-
tional noncritical thermal Ising theory (as also mentioned
above). Here ΛG is the so-called Ginzburg scale [80]: at
distances larger than Λ−1

G , correlation functions scale
universally with the critical exponents of the WF fixed
point. For distances smaller than Λ−1

G correlation functions
are instead dominated by nonuniversal corrections (lattice
effects, RG irrelevant spin interactions, etc.). From the side
of dynamics, upon initializing the spin model (1)–(2)
sufficiently away from the eventual steady state, it will
enter, after a transient (t≲ Λ−1

G ), into a self-similar scaling
regime where spatial- and time-resolved spin correlations
are governed by the critical exponents of the WF fixed
point. Such dynamical scaling regime persists until sponta-
neous emission will “heat” the dark modes at times larger
than the inverse of k�; at these times, the critical long-
wavelength theory will crossover into a conventional
Langevin theory.
Fixed point for α > 1.—By inspection of Eqs. (4) we

notice that for α > 1 the kinetic coefficient ∼Kq2 in the
advanced or retarded sector dominates over the ∝ Γ2

1q
2α

term resulting from nonlocal dissipation. This leads to a
dynamical critical exponent z ¼ 1, with the term ∝ ωΓq

now negligible in the infrared; in other words, we have an
Ising model with short-range interactions and a ∝ Γ1qα

Markovian noise. This changes the critical properties of the
theory as summarized in Table I. At this WF fixed point
quantum terms such as the quartic uqφ3

qφc are irrelevant,
unless α > 2. However, as α increases the spatial support of
losses quickly shrinks [70], retrieving uninteresting local
dissipation effects similar to Γ0.
Competing long-range interactions and losses.—Finally,

we consider the scenario where long-range Ising
interactions,

P
hi;jiðJ=ji − jj1þαÞσxi σxj , compete with

long-range losses. Such term adds a Jqα contribution to
PR=A [75–77,91]. By inspection of Eqs. (4), we realize that

TABLE I. Nonequilibrium criticality with long-range (LR) losses. The third column displays the lower (dl) and upper (du) critical
dimensions, while the fourth one summarizes the effective dynamical field theory valid at criticality. Below the lower critical dimension
separate scaling and RG analyses are required, and an Ising-type field theory description does not apply. The thresholds dl and du
implicitly bound the values of α compatible with the universality class discussed in this Letter.

Critical exponent dl < d < du Effective field theory

LR losses with α < 1 ν ¼ 1=ð2αÞ þ ϵ=ð12α2Þ 2α < d < 4α Coexisting inertial=frictional derivatives þ soft noise
LR losses with α > 1 ν ¼ 1=2þ ϵ=12 3 − α < d < 5 − α Short-range Ising modelþ soft noise
LR losses and interactions (α < 2) ν ¼ 1=αþ ϵ=ð3α2Þ α=2 < d < 3α=2 Long-range Ising modelþ soft noise
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for α > 2 we recover the same scaling discussed above for
long-range losses with α > 1. For α < 2, instead, we find a
leading scaling PR=A ∼ Jqα, since long-range interactions
suppress at small momenta the contribution of nonlocal
losses in the spectral sector (z ¼ α=2). This is equivalent to
the critical scaling of a long-range interacting Ising model
driven by a ∝ Γ1qα Markovian noise, and it is a limit where
classical and quantum vertices scale alike, uc;q ∼ q3α=2−d.
Such quantum scaling regime is formally equivalent to a
critical zero-temperature long-range interacting Ising
model [75,76]. The associated critical dimensions and
exponents are summarized in Table I (they do not hold
for d ¼ 3).
Perspectives.—A recent cavity QED experiment [73]

demonstrates the tunability of nonlocal spin couplings,
suggesting that the exploration of programmable nonuni-
tary interactions [70] in critical spin systems may belong to
near-term implementations. An interesting follow-up
research direction would consist in focusing on richer
driven open platforms, where incoherent losses or pumps
and dephasing channels with nonlocal spatial character can
compete. For instance, revising driven open condensates
with anOð2Þ order parameter [44,45,52,102,103] appears a
natural perspective. In the same spirit, the effective field
theory derived in this Letter can be considered as a natural
starting point for an extension to models with different
symmetries or equipped with global conservation laws, in
the pursuit of an Halperin-Hoenberg [20] classification of
critical theories with tunable dark states. It also appears
important to access quantitatively the value of the critical
exponents (and the radius of convergence of the ϵ expan-
sion) using methods, like functional RG, which are
technically suited to perform loop resummations in models
with long-range interactions [95]. However, the ϵ expan-
sion of our Letter is expected to describe critical properties
at least qualitatively, as it also occurs in Hermitian long-
range Ising models [76,77,95], or as it would be for the
large-N version [104] of the field theory (3). In all these
respects, our findings can be regarded as a seed for
technically richer explorations.
Finally, we believe it would be extremely interesting to

study the effect of long-range losses on the paramagnet and
ferromagnet separated by the critical point. This appears,
however, as a technically challenging task since it requires
to solve the nondiagonal Liouvillian in (2) beyond semi-
classical limits where its many-body dynamics have been
efficiently simulated so far [105]. Quantum kinetic equa-
tions based on Majorana fermions representation of spins
[106] could represent a possible avenue to find correlations
in this case.
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