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Information scrambling refers to the rapid spreading of initially localized information over an entire
system, via the generation of global entanglement. This effect is usually detected by measuring a temporal
decay of the out-of-time order correlators. However, in experiments, decays of these correlators suffer from
fake positive signals from various sources, e.g., decoherence due to inevitable couplings to the
environment, or errors that cause mismatches between the purported forward and backward evolutions.
In this Letter, we provide a simple and robust approach to single out the effect of genuine scrambling. This
allows us to benchmark the scrambling process by quantifying the degree of the scrambling from the noisy
backgrounds. We also demonstrate our protocol with simulations on IBM cloud-based quantum computers.
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In complex many-body systems, initially localized
information quickly spreads throughout the entire system—
a process known as information scrambling. Though
information is ultimately conserved, it gets encoded into
global entanglement among many degrees of freedom,
and hence becomes inaccessible by local measurement.
Information scrambling was originally studied in the
context of black hole physics [1-3], and has since emerged
as a field with a wide-ranging impact across different areas
in physics, e.g., quantum chaos in many-body systems
[4-10], phase transition [11,12], and quantum machine
learning [13]. Considerable effort has also been made
in probing this effect in various experimental systems
[14-16].

Information scrambling is usually measured by the
temporal decay of the out-of-time order correlators
(OTOCs) [2,17,18], defined as

(Wi (VIW()V). (1)

where the average is taken over a given quantum state. W
and V are local operators, usually considered to act on
distinct subsystems. W () is the Heisenberg evolution of W,
which becomes a global operator as scrambling proceeds,
causing decay of the OTOC:s.

However, it is difficult to distinguish between scrambling
and decoherence [19]: the latter causes leakage of the
system information to the environment and, in general,
induces decay of the OTOC as well. Protocols that measure
the OTOC often involve forward and backward evolution
of the system, which in practice do not exactly match each
other due to operational errors. This can also cause decay of
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the OTOC signals. Understanding the behavior of scram-
bling in the presence of decoherence and operational errors
is an active and ongoing areas of research in the field
[19-28]. In this line of effect, the first experiment that
provided a positive verification of scrambling was per-
formed with trapped ions [14], using a teleportation-based
protocol [19]. This approach uses two copies of the system
and an entangled input state (Bell state) between the copies,
requiring sophisticated engineering of the system and
therefore hindering its practical applications. More
recently, the field has witnessed an increasing number of
studies of information scrambling in various experimental
platforms, e.g., superconductors [29], trapped ions [25],
and cloud-based quantum computers [30-32]. However, it
remains a challenge to design a simple and robust protocol
for benchmarking the true signals of scrambling from a
noisy background.

In this Letter, we propose a solution to this task. Our
approach is based on a novel quantum butterfly effect
[10,33] that can unambiguously distinguish scrambling
and nonscrambling dynamics. Because of the global
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FIG. 1. In the Lorenz picture of the butterfly effect, one
compares two trajectories evolved under the same Hamiltonian,
but with slightly different initial conditions. In the Bradbury
picture, perturbation is applied in the past.
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entanglement generated by scrambling, information
becomes more robust against local perturbations, and hence,
when scrambled and disturbed by local perturbations, can
still be partially recovered through a reversed unscrambling
process. In contrast, decoherence and errors only temper this
effect and weaken the signal produced by true scrambling. In
the following, we develop the underlying theory, introduce
the benchmarking protocol, and apply it to a model problem
of fast scrambling in the presence of decoherence.

In chaotic classical dynamics, small perturbations in the
initial conditions can trigger dramatic changes in the time
evolution. This effect is well known as the Lorenz butterfly
effect. An (classically) equivalent picture of the butterfly
effect was introduced by Bradbury [34], where the pertur-
bation is applied in the past (Fig. 1). However, these two
pictures exhibit subtle differences in quantum dynamics
[10,35]: the overlap between the two trajectories (wave
functions) in the Lorenz picture remains a constant during
time evolution, due to the unitarity of (isolated) quantum
dynamics. On the other hand, in the Bradbury picture, the
overlap between the two states at time t = O—the initial
input state and the final output state after the backward and
forward evolution loop—does decay as a function of the
evolution time. Moreover, asymptotically, the output state
always contains partial information of the initial one, with
the amount of information determined by the type of
perturbation. This is in sharp contrast with classical chaotic
dynamics, which on average smear all the initial informa-
tion over the entire accessible phase space. For these
reasons, we propose to call this phenomenon the quantum
antibutterfly effect.

More precisely, the perturbation in the “past” can be
described by a general quantum channel A:

ZMk/)Mk’ ZMkM}i =L (2
K

where [ is the identity operator, and M, are the Kraus
operators. The initial state p, after the Bradbury’s process
aforementioned, becomes

p—Alp

p(t) = U,AUpU,)U;, (3)

where U, is the evolution operator for a time ¢. This process
is also recognized as the quantum twirling channel of the
perturbation A [36].

After a long time evolution with a chaotic Hamiltonian,
when the evolution operator becomes sufficiently random,
the asymptotic state can on average be described as

Pas =pPp+ (1 =p)=, 4)

QU=

where d the dimension of the total Hilbert space and the
probability p is determined by the error channel, namely,

ZkTrM (TrM| — 1
-1

(5)

A detailed derivation of this form is presented in
Supplemental Material [37].

To extract this universal probability p, one can measure,
e.g., the fidelity of the output state of the twirling channel.
Here, we will focus on a similar quantity, the overlap
between the final and initial states,

ZTr

whose asymptotic value has a simple expression

F(t) = Trlp(2) ()pM(1)p].  (6)

Fy = pTrp?] + (1= p)/d. (7)

One can verify that this asymptotic value of the overlap
applies to small subsystems as well, for which the overlap
can be evaluated through a state tomography.

We would like to emphasize several remarks:

(i) The asymptotic state (4) is obtained by averaging over
an assemble of random unitaries with respect to Haar
measure [38]. However, the fluctuation from the mean is
exponentially small in the size of the total system.
Consequently, for a single unitary randomly drawn from
such an ensemble, deviations from this averaged behavior
are exponentially suppressed.

(i1) The overlap (6) is identified as a sum of special types
of OTOCs between the state p and the Kraus operators.
Hence, scrambling causes decay of the overlap in the same
manner as to the OTOCs. This particular type of OTOC has
been used [16] and demonstrated to have various benefits
[39]. As will be shown in the following, this quantity can
also acquire a large universal asymptotic value (7), which
will respond further to decoherence and errors. This unique
feather lies in the core of our protocol for singling out
information scrambling.

Inspired by the above theory of the antibutterfly effect,
we propose the following protocol to detect and benchmark
information scrambling. In this protocol, the total system is
sent through a Bradbury process, and only a subsystem is
measured:

1. Initialize the total system such that a small subsystem
is prepared in state pg.

2. Evolve the system forward for a time t#; perturb a
different subsystem, and then evolve the system backward
for the same time .

3. Measure the same subsystem, and evaluate its overlap
with respect to the initial state pg.

For example, for a (large) spin-1/2 system with scram-
bling dynamics, we prepare a single target spin in any pure
state and choose the perturbation channel as a projective
measurement on any single spin. The overlap computed
with (7) and (5) saturates to ~0.75. On the other hand, in
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FIG. 2. Measurements of the OTOC. (a) Quantum circuit for
the interference protocol (left). Structure of a single evolution
step of the fast scrambling model. (b) OTOC for the cases of
scrambling and decoherence (Table I), which produces similar
signals that can hardly be distinguished.

the presence of decoherence and errors, the asymptotic state
of the target spin will become random, hence resulting in
~0.5 overlap. Calculation of these values is presented in
Supplemental Material [37].

We also note the similarity between our approach and
randomized benchmarking protocol [40,41] for quantum
computers. Indeed, our approach inherits the main benefits
of randomized benchmarking, i.e., it is scalable and is
independent with errors in state initialization and readout.

As an illustration, we study a fast scrambling model
recently proposed in Ref. [42]. The evolution unitary in the
fast scrambling model consists of repetitive layers of circuit
evolution. Each layer [Fig. 2(a), right] is composed of Haar
random single-qubit unitaries, immediately followed by a
global entangling gate, i.e., which for n qubits is given by

e (-i155=5"22,). ®)

i<j

where ¢ is a constant parameter that controls the scrambling
strength, and Z; is the Pauli Z operator applied on the ith
qubit. This building block can be viewed as a Trotterization
of the evolution generated by a spin Hamiltonian with
strong random local fields (generating single-gate random
rotations) and all-to-all two-body couplings (creating the
global entangling gate).

To simulate the effect of a noisy environment, we
introduce errors in each layer of the single-qubit gates—
after each single-qubit Haar random gate, a Pauli X gate
and a Pauli Z gate are applied independently with prob-
ability g. Note that this error channel of the system qubits
can be extended to a unitary evolution in an enlarged
Hilbert space including ancillary qubits. Hence, the error
model describes a decoherence process as well. We now

TABLE I. Cases compared for the fast scrambling model. The
rate of scrambling increases with the value of g. The strength of
the decoherence increase with the value of g.

Cases S1 S2 D1 D2 1
g 1 2 0.5 0.5 1
q 0 0 0.025 0.1 0.001

have two parameters, g and ¢, that control the strength
of scrambling and decoherence, respectively. Table I lists
the cases we considered. In the following numerical
studies, we fix n = 10.

The OTOC measurement is achieved using the inter-
ference protocol developed in Ref. [43], as shown in the
quantum circuit diagram in Fig. 2(a). The intermediate X
gate is placed on the ith qubit g;. The final measurement of
the average value (69) (or (69)) on the ancillary qubit g
then gives the real (or imaginary) part of the OTOC
(6%(t)6tod(t)6t), where ¢, in analog to time, is the number
of layers in the forward (and hence the backward) evolution.

Figure 2(b) compares the evolution of the OTOC for
ideal scrambling (without noise) and weak scrambling with
strong decoherence, which exhibit similar decay curves.
Hence, these two situations are practically indistinguish-
able from the OTOC measurements.

We now examine the performance of our benchmark
protocol for the fast scrambling model under the same
conditions. The circuit diagram for this protocol is shown in
Fig. 3(a). Here, all the qubits are prepared in the computa-
tional |0). The recovery signal is obtained by measuring the
overlap between the first qubit ¢, final state and its initial
state. We also specify the intermediate perturbation
between the forward and backward evolution as a projec-
tive measurement on a single qubit (other than the qubit 1)
along the Z axis. Note that since the evolution unitary
contains Haar-random single-qubit gates in each layer, the
measurement in a fixed direction is equivalent to random
projective measurements. As discussed in the foregoing
section, for this particular perturbation channel, the
expected value of overlap (6) is 0.75 for ideal scrambling
unitaries. On the other hand, in the case of strong
decoherence, when the qubits eventually lose their coher-
ence information, the overlap would be trivially 0.5. Hence,
the cases of scrambling with and without decoherence
exhibit distinct asymptotic values of overlap. This is clearly
demonstrated in Fig. 3(b).

To vitalize the emergence of the recovery signal pro-
duced by scrambling, we also performed simulations with
different numbers of layers in the forward and backward
evolution. That is, the overlap is measured after ¢, and ¢,
layers of forward and backward evolution respectively, and
if t, > t;, an additional 7, —#; layers in the backward
evolution are chosen as independently random. Figures 3(c)
and 3(d) depict the overlap as a function of #, for fixed
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FIG. 3.

Measurement of the overlap F(¢) in (6). (a) Schematic of the quantum circuit. (b) Decay of the overlap for the cases of

scrambling and decoherence (Table I). (c), (d) The overlap as a function of the number of layers (#,) in the backward evolution, for fixed
numbers of layers ¢ in the forward evolution. (e), (g) Density plot for the overlap.

values of #;. The density plots for the overlap scanned
through various #; and 7, are shown in Figs. 3(e) and 3(f).
The recovery signal emerges in a finite window around the
peak t; = t,. The width of the peak reflects the timescale
for local dissipation. For the current fast scrambling model,
due to the random single-qubit rotation in every single
layer, the recovery signal disappears as soon as f, is one
layer away from t;. It is worth noting that, in experiments
with real time evolution, there can be a mismatch between
the forward and backward evolution times #; and ¢,, which
contributes to the decay of the signal as well, together with
decoherence caused by external couplings. Our protocol
does not remove this source of errors, but positively
confirms information scrambling when they are present.
The above simulations demonstrate that our protocol can
unambiguously distinguish between scrambling and
decoherence. In general, both of these two competing
factors contribute to the decay of the overlap, but to
different asymptotic values. This gives rise to a two-stage
decay. In the early scrambling stage, the overlap decay is
influenced by both scrambling and decoherence, until the
information is fully scrambled and the overlap reaches
the saturation value (7). In the latter decoherence stage, the
overlap further decays to a smaller value, at a rate
determined purely by decoherence. The appearance of
the two-stage decay indicates the presence of scrambling.
Suppose A, and 4, are the exponential decay rates
corresponding to scrambling and decoherence, respec-
tively. In the extreme cases of strong scrambling and strong
decoherence, the decay of F(f) can be described as

F(I) = { (1 - F;S)e_/kt + F;Sv /1s > ldﬂ

(1 =FL)e ™ + Fd, 1, < Ay,

where F$; and F¢ are the asymptotic values of F(z)
induced by scrambling and decoherence, respectively. In
the intermediate regime, such that the scrambling and
decoherence are comparable, we propose an ansatz of F(z):

F(t) = (ale_ﬁft—i—az)e_’ld’—i—ng. (10)

With this, we can fit the observed overlap at long times
(when the system gets sufficiently scrambled and the first
exponential term vanishes) to a pure exponential function
and extract the decoherence rate 4,. Then the scrambling

FIG. 4. Decay of the overlap F(r) for case I (Table I) with both
scrambling and decoherence. Squares are numerical data. The red
solid curve is the best fit to the ansatz (10). To visualize the two
stage decay of F(r), we also plotted (black dashed) the long time
pure exponential part of the ansatz (10), which clearly departs
from the early decay. Insets: F(¢) — F¢ in semilog scale, which
show a single exponential decay at long times, and a sum of two
exponential decays at early times. At the very beginning, F(r)
takes a quadratic form [44].
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rate A, can be extracted by fitting the early time decay to the
ansatz (10). We applied this procedure to case I (Table I),
where both scrambling and decoherence contribute sub-
stantially to the decay of F(¢). Figure 4 shows simulations
of F(t), which is described accurately by ansatz (10). This
allows us to separate the scrambling rate 4, = 0.216 and the
decoherence rate 1; = 0.040, and hence positively verify
the presence of scrambling. The scrambling rate is deter-
mined purely by the underlying scrambling dynamics, and
should not be altered by the intermediate perturbation. We
verified this with different types of perturbations (2) and
recovery probabilities (5). The extracted scrambling rates
are the same with a precision to the second decimal place.
In Supplemental Material [37], we present simulations
using an IBM cloud-based quantum computer. It clearly
demonstrated that our protocol can successfully extract the
correct scrambling rate under natural decoherence and gate
errors of the current small size noisy quantum processors.

To summarize, we have developed a protocol to bench-
mark information scrambling, and examined it with both
numerical studies and simulations on cloud-based quantum
computers. This approach distinguishes between informa-
tion scrambling and fake positive signals, produced by
decoherence and operational errors in experiments unam-
biguously. It can be also used to quantify the degree of
scrambling from the noisy background. Our method
requires only a single loop of forward and backward
evolution, and hence can be applied to any system with
access to time-reversing the dynamics.
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