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Nearest neighbor bosons possessing only on-site interactions do not form on-site bound pairs in their
quantum walk due to fermionization. We obtain signatures of nontrivial on-site pairing in the quantum walk
of strongly interacting two component bosons in a one dimensional lattice. By considering an initial state
with particles from different components located at the nearest-neighbor sites in the central region of the
lattice, we show that in the dynamical evolution of the system, competing intra- and intercomponent on-site
repulsion leads to the formation of on-site intercomponent bound states. We find that when the total number
of particles is three, an intercomponent pair is favored in the limit of equal intra- and intercomponent
interaction strengths. However, when two bosons from each species are considered, intercomponent pairs
and trimer are favored depending on the ratios of the intra- and intercomponent interactions. In both cases,
we find that the quantum walks exhibit a reentrant behavior as a function of intercomponent interaction.
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Introduction.—The phenomenon of quantum walk (QW)
has attracted much attention recently due to its importance
in fundamental science as well as quantum information
[1,2]. The propagation of quantum particles in different
sites obeying the superposition principle of quantum
mechanics makes the QW superior compared to its classical
counterpart [3]. Although there are two types of QW
known as discrete and continuous-time QW that have been
proposed [1], the framework of continuous-time QW
(CTQW) provides a versatile approach to study the
dynamical properties of quantum mechanical particles in
a lattice at a few particle levels. Owing to their accessibility
in both theoretical and experimental approaches, the
CTQW has been studied and observed in disparate systems
such as ion traps, trapped neutral atoms, photonic lattices,
optical waveguides, and superconducting circuits [4–15].
Recent studies on periodic lattices show that the QWs of

more than one indistinguishable particle exhibits nontrivial
correlations due to Hanbury Brown–Twiss (HBT) interfer-
ence [13,16]. From theoretical and experimental studies, it
is well established that when the walkers start from the
same site, the individual particle wave packets spread
ballistically and symmetrically from their initial positions.
However, when the walkers are at two nearest neighbor
(NN) sites, they propagate together, exhibiting the
phenomenon of bosonic bunching. Further developments
in studying the QWs of interacting particles have enabled
us to gain insights into the combined effects of inter-
actions, particle statistics, and strong correlations [17–21].

Interestingly, the presence of interactions between the
particles leads to a completely different scenario in the
QW which has recently been studied in the context of
the Bose-Hubbard models in one-dimension [13,22]. It has
been shown that two strongly interacting bosons on a single
site exhibit QW of bound bosonic pairs, whereas two NN
bosons show a transition from boson to fermion like spatial
correlations and antibunching with an increase in on-site
interaction [15,16]. Moreover, the QWof two NN bosons in
the presence of NN interaction exhibits the signatures of a
NN pair [23,24]. On the other hand, the QWs of two
interacting distinguishable particles have also been explored
in one dimension [25–28] exhibiting features qualitatively
similar to the QW of indistinguishable particles.
An important inference that can be drawn from the

existing findings is that strongly interacting NN bosons do
not form local pairs in their QW. However, in this Letter, we
show that in the case of the QW of two-component bosons
in one dimension, nontrivial local bound pairs can be
formed due to the interplay of inter- and intracomponent
interactions. By considering different initial states of more
than two particles, we show that the quantum correlation
along with competing interactions favors the formation of
on-site intercomponent bound pairs even if the two com-
ponents start their QW from the NN sites. Depending on the
initial conditions the formation of bound pairs are found to
be more robust when suitable hopping asymmetry is
introduced. Moreover, we obtain a reentrant feature in
the QW as a function of the interspecies interaction.
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Model.—Our analysis is based on the two-component
Bose-Hubbard model which is given as

H ¼ −
X

hi;ji;σ
Jσða†i;σaj;σ þ H:c:Þ þU↑↓

X

i

ni;↑ni;↓

þ
X

i;σ

Uσ

2
ni;σðni;σ − 1Þ; ð1Þ

where a†i;σðai;σÞ are the creation (annihilation) operators of
two different components σ ∈ ð↑;↓Þ that can correspond
to two different atoms or two hyperfine states of a single
atom. ni;σ ¼ a†i;σai;σ is the number operator at the ith site
corresponding to individual component σ. Here, Jσ and Uσ

are the NN hopping matrix elements and on-site intra-
component interaction energies of the individual compo-
nents σ, respectively. The intercomponent interaction
is denoted by U↑↓. In our studies, we assume the two
components as the two hyperfine states of a single atom in a
state-dependent optical lattice [29]. This assumption leads
to the conditionU↑ ¼ U↓ ¼ U and we define δ ¼ J↓=J↑ to
introduce the hopping asymmetry between the states or
components. Hopping asymmetry is ensured by setting
J↑ > J↓, i.e., δ < 1 and we take J↑ ¼ 1 as the energy scale.
We study the CTQW (hereafter referred as QW) by

computing experimentally relevant quantities such as the
on-site densities and the two-site correlation functions. The
total on-site density is defined as niðtÞ ¼ hPσ a

†
i;σai;σi.

Unlike the single particle case [13,16,18], for the two-
component system we compute both the interspecies
density-density and intraspecies two-particle correlation
function defined as

Γ↓↑
ij ðtÞ¼ hni;↓nj;↑i and Γσ

ijðtÞ¼ ha†i;σa†j;σaj;σai;σi; ð2Þ

respectively. These quantities are calculated with a
time evolved state jΨðtÞi ¼ e−iHt=ℏjΨð0Þi, where jΨð0Þi
is some initial state. The time evolution is obtained by
utilizing the time evolving block decimation (TEBD)
method using the matrix product states (MPS) [30,31]
with appropriate numerical control parameteres, given in
[32]. The simulations are carried out using the open source
MPS (OSMPS) library [33,34]. In our analysis, we consider
a system size of L ¼ 41 except for the case of long time
evolution where we take L ¼ 82.
For our studies we consider two different initial states

where one or two particles from different components
are located at the two NN sites at the center of the lattice.
The states are (i) two ↑ particles and one ↓ particle, i.e.,
jΨð0ÞiI ¼ a†20;↑a

†
1;↓jvaci and (ii) two ↑ and two ↓ particles,

i.e., jΨð0ÞiII ¼ a†20;↑a
†2
1;↓jvaci as depicted in Figs. 1(a)

and 1(b) respectively. In the following we discuss the
QWs for both the cases in detail.
Two ↑ and one ↓ particles.—In this case we consider

two ↑ particles located at the central site (i.e., i ¼ 0) of the

lattice and a ↓ particle at the NN site on the right (i.e.,
i ¼ 1). The initial state corresponding to this situation is
jΨð0ÞiI, which is defined earlier. This choice of the initial
state ensures that U↓ is irrelevant in the Hamiltonian of
Eq. (1). In such a scenario, the competing interactions are
U↑ ¼ U and U↑↓. We first discuss the symmetric hopping
case, i.e., δ ¼ 1. In the absence ofU↑↓, the two components
behave independently in their QWs. For large U, the two ↑
particles form a repulsively bound pair [35] and exhibit the
QW of a composite particle with reduced hopping strength
[13,16,22]. This situation is similar to the case of the QWs
of two particles with asymmetric hopping as discussed in
Ref. [27]. It is expected that with the onset of U↑↓, the
individual wave packets will start reflecting from each
other leading to complete reflection in the limit of large
U↑↓. In contrast, we show that for a moderate value of
U ¼ 10J↑, which is sufficient to form a bound state of ↑
particles, the QW exhibits a reentrant transition as a
function of U↑↓ as can be seen from Fig. 2(a)(I–IV).
WhenU↑↓ ¼ 0J↑, the QW shows a slow and fast spreading
of densities indicative of that of ↑↑ pair and ↓ particle,
respectively, which can be seen from the finite diagonal
elements of the correlation matrix Γ↑

ij as shown in

FIG. 1. The lattice diagrams (a) and (b) represent the ini-
tial state jΨð0ÞiI ¼ a†20;↑a

†
1;↓jvaci and jΨð0ÞiII ¼ a†20;↑a

†2
1;↓jvaci,

respectively.

(a)

(b)

(c)

FIG. 2. Panel (a) shows the on-site density evolution with the
initial state jΨð0ÞiI for (I) U↑↓ ¼ 0J↑, (II) U↑↓ ¼ 5J↑, (III)
U↑↓ ¼ 10J↑, and (IV) U↑↓ ¼ 20J↑. Panel (b) and (c) show the

correlation functions Γ↓↑
ij and Γ↑

ij, respectively. Here U ¼ 10J↑
and δ ¼ 1 are considered and the correlation functions are plotted
at t ¼ 5J−1↑ .
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Fig. 2(c-I). An increase in U↑↓ leads to an onset of a
fast spreading wave packet reflected from the slower one
[Fig. 2(a-II) for U↑↓ ¼ 5J↑], a feature which reappears
when U↑↓ > U [Fig. 2(a-IV) for U↑↓ ¼ 20J↑]. This
reflection of wave packet is due to the interparticle
repulsion and can be understood from the vanishing of
the upper triangular matrix elements of Γ↓↑

ij as shown in
Fig. 2(b-II) and Fig. 2(b-IV) plotted for U↑↓ ¼ 5J↑ and
20J↑, respectively. Careful analysis of the correlation
function, however, reveals that while in the limit U↑↓ < U
and U↑↓ > U, the ↑↑ pair survives [see Fig. 2(c-II) and
Fig. 2(c-IV)], at U↑↓ ∼U it tends to break and a two-
component pair (which we call a doublon, i.e., ↑↓) tends to
form—a scenario completely different from U↑↓ ¼ 0J↑
limit [see Fig. 2]. This feature can be clearly seen from the
gradual fading away of the diagonal elements of the
intracomponent correlation matrix Γ↑

ij [Fig. 2(c-III)] and
appearance of finite diagonal elements of intercomponent
density correlation matrix Γ↓↑

ij [Fig. 2(b-III)].
Interestingly, we further obtain that by reducing the

hopping strength of the ↓ component compared to the ↑
component, i.e., making δ < 1, breaks the ↑↑ pair com-
pletely and a stable doublon is formed after a short time
evolution. This doublon acts as a potential barrier that
reflects the wave packet of the isolated ↑ component. These
features can be seen from Fig. 3 where the density
evolution and correlation functions are plotted by consi-
dering δ ¼ 0.2 while keeping U↑↓ ¼ U ¼ 10J↑. Note that
in this case also the reentrant feature appears in the QW
similar to the case of δ ¼ 1 except a noticeable change in
the spreading of densities due to reflection [36].
In order to quantify the doublon formation and the

dissociation of the ↑↑ pair, we compute the quantities
defined as

P↑↓ ¼
X

i

ni;↑ni;↓; P↑↑ ¼ 1=2
X

i

ðn2i;↑ − ni;↑Þ; ð3Þ

which count the number of ↑↓ and ↑↑ pairs in the system
and can be computed from the correlation matrix.

In Fig. 4(a), we plot both P↑↓ (filled symbols) and P↑↑
(open symbols) as a function of U↑↓ for both δ ¼ 0.2
(red squares) and δ ¼ 1.0 (blue circles) while keeping
U ¼ 10J↑, after a time evolution to t ¼ 10J−1↑ . Clearly, the
doublon formation is indicated by a dominant value
of P↑↓ at U↑↓ ¼ U ¼ 10J↑ for δ ¼ 0.2. Note that for
δ ¼ 1, both P↑↓ and P↑↑ are of the same order due to the
equal probabilities of formation of both the types of bound
pairs. We also plot the time evolution of P↑↓ and P↑↑ at the
critical value U↑↓ ¼ U ¼ 10J↑ in Fig. 4(b). The finite
(zero) value of P↑↓ (P↑↑) after t > 1J−1↑ indicates the
formation (dissociation) of ↑↓ (↑↑) pair. In the inset of
Fig. 4(b), the variation of P↑↓ for different values of δ
confirms that the doublon formation is robust for smaller δ.
Summarizing up to this point, we have obtained that

when U↑↓ is of the order of U, the ↑↑ pair tends to break,
and a ↑↓ pair tends to form. An introduction of hopping
imbalance results in a complete dissociation of a ↑↑ pair,
and a doublon is formed.
The reason behind this can be explained as follows. In

the limit of equal inter- and intraspecies interaction and
equal hopping strengths of both the components, the
binding energy of the ↑↑ pair and ↑ ↓ pair are equal.
Hence the states jð↑↑Þ0; ð↓Þ1i and jð↑Þ0; ð↑↓Þ1i are
degenerate. Therefore, during the QWs, when the wave
packet of the ↑↑ pair overlaps with that of the ↓ component
there is equal probability of forming either of the bound
states. Hence, we see the signature of both the ↑↑ pair and
↑↓ pair in the QWs. However, by making the J↓ smaller
and comparable to the effective hopping strength of ↑↑
pair, the doublon formation becomes energetically more
favorable. This is because the doublon formation increases
the overall energy of the system, and the particles avoid
each other due to repulsion. Note that this phenomenon is

(a) (b) (c)

FIG. 3. Figure shows (a) hnii, (b) Γ↓↑
ij , and (c) Γ↑

ij for the QWs
with the initial state jΨð0ÞiI for U↑↓ ¼ 10J↑, U ¼ 10J↑, and
δ ¼ 0.2. The correlation functions are plotted at t ¼ 5J−1↑ .

(a) (b)

FIG. 4. (a) P↑↓ (filled symbols) and P↑↑ (open symbols) are
plotted against U↑↓=J↑ for δ ¼ 0.2 (red squares) and δ ¼ 1.0
(blue circles) at t ¼ 10J−1↑ . (b) Shows the time evolution of P↑↓

(red circles) and P↑↑ (blue squares) for δ ¼ 0.2 and U↑↓ ¼ 10J↑
indicating complete intercomponent pair formation and breaking
up of ↑↑ pair. (Inset) The time evolution of P↑↓ for different δ
such as δ ¼ 0.2 (red circles), δ ¼ 0.4 (green squares), and δ ¼ 1
(black stars).
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due to the interplay of both intra- and interspecies inter-
actions and hence forbidden in the case of indistinguishable
bosons [22] and two-component mixture with one particle
from each species as considered in Ref. [27].
Two ↑ and two ↓ particles.—In this part we consider

two particles from each component and study their QWs.
The initial state considered for this case is given by
jΨð0ÞiII ¼ a†20;↑a

†2
1;↓jvaci. Note that for this initial state

the U↓ term in the Hamiltonian of Eq. (1) is relevant,
which was ignored previously. Now, the physics of the
system will be governed by all three interactions, namely,
U↑, U↓, and U↑↓. Similar to the previous cases, here we
assume U↑ ¼ U↓ ¼ U ¼ 10J↑ and vary U↑↓ for our
investigation. We begin the discussion with asymmetric
hopping and come back to the symmetric case later. In
the limit of U ¼ 10J↑, both ↑ and ↓ particles form
repulsively bound pairs at the beginning when U↑↓ ¼ 0J↑
[13,16,18,22,35]. Upon increasing the value of U↑↓ with
δ ¼ 0.2, we see simultaneous signatures of a three-particle
and a single particle QW in the density evolution at
U↑↓ ¼ 5J↑ as shown in Fig. 5(a). The figure indicates
that a ↑ particle forms a pair with an already formed ↓↓
pair leaving behind an isolated ↑ particle indicated by the
central bright patch. These features can be seen in the

correlation data shown in Figs. 5(b) and 5(c), where Γ↓↑
ij

and Γ↓
ij are plotted, respectively. The bright spots at (1,1)

position in Figs. 5(b) and 5(c) indicate the three-particle
bound state. To further quantify this we compare the
behavior of P↓↓ ¼ 1=2

P
iðn2i;↓ − ni;↓Þ along with P↑↑

and P↑↓ as a function of U↑↓ in Fig. 5(g). The values of
P↑↑ ∼ 0 (blue square), P↓↓ ∼ 1 (black diamond), and
P↑↓ ∼ 2 (red circle) forU↑↓ ¼ 5J↑ after the time evolution
to t ¼ 10J−1↑ confirm the formation of the ↑↓↓ bound
state, which we call a triplon. The triplon formation can
also be confirmed from the time evolved values of P’s that
saturate to P↑↓ ∼ 2, P↓↓ ∼ 1, and P↑↑ ∼ 0 as shown in
Fig. 5(h). On the other hand, the isolated ↑ particle cannot
penetrate the potential barrier created by the triplon and
performs a unidirectional QWon the left part of the lattice
as can be seen from Fig. 5(a).
Further increase in U↑↓ tends to favor the formation of

all possible pairs such as the doublon (↑↓) and two
intracomponent pairs (↑↑ and ↓↓) at U↑↓ ¼ U ¼ 10J↑.
The signatures of which can be seen as the finite diagonal
elements of the correlation matrices [Figs. 5(d)–5(f)] and
the behavior of the values of P’s [Figs. 5(g) and 5(i)]. It is to
be noted that the P’s exhibit finite oscillation in their time
evolution for δ ¼ 0.2, which saturate fast when δ is
increased [36]. The slow evolution for δ ¼ 0.2 is due to
the weak effective hopping. Interestingly, we also see the
signature of a nearest-neighbor ↑↓ pair in the density-
density correlation matrix in Fig. 5(f). This unusual pairing

is inevitable due to the simultaneous formation of on-site
pairs and doublons.
The triplon formation at U↑↓ ¼ U=2 ¼ 5J↑ can also be

attributed to the condition of minimum effective interaction
which can be understood as follows. In the atomic limit,
the states jð↑↑Þ0ð↓↓Þ1i, jð↑Þ0ð↑↓↓Þ1i, and jð↑↑↓Þ0ð↓Þ1i
are degenerate. With δ ¼ 0.2, the ↑↑ pair is weakly bound
compared to the ↓↓ pair because U=J↑ < U=J↓. This
ensures faster spreading of the former compared to the
latter. Hence, during the time evolution, when the wave
packet of the ↑↑ pair overlaps with that of the ↓↓ pair and
due to degeneracy, a stable triplon is formed. Once again, at
U↑↓ ¼ U ¼ 10J↑, the system exhibits another condition of
degenerate states where the particles prefer to be in states
such as jð↑↓Þ0ð↑↓Þ1i, jð↑↑Þ0ð↓↓Þ1i. In the regime when
U↑↓ < U ¼ 5J↑, 5J↑ < U↑↓ < 10J↑, andU↑↓ > 10J↑ the
bosons favors to stay in the original configuration of
jð↑↑Þ0ð↓↓Þ1i without forming an intercomponent bound
state. This is because in the limit U↑↓ ≷ U the breaking of
the intracomponent pair is energetically not favorable. Note
that the reentrant feature with respect to U↑↓ is also present
in the four particle QW [36].
On the other hand, for δ ¼ 1, the situation is completely

different. Because of symmetric hopping strengths, the ↑↑
and ↓↓ pairs tend to break simultaneously and a doublon
tends to form at a criticalU↑↓ ¼ 5J↑ [36]. Note that similar

(a) (b) (c)

(d) (e) (f)

(g)
(h)

(i)

FIG. 5. Figure shows (a)hnii, (b) Γ↓↑
ij , and (c) Γ↓

ij for the QWs
with the initial state jΨð0ÞiII for U↑↓ ¼ 5J↑, U ¼ 10J↑, and

δ ¼ 0.2 at t ¼ 10J−1↑ . (d)–(f) Show the values of Γ↑
ij, Γ

↓
ij, and Γ

↓↑
ij ,

respectively, for U↑↓ ¼ 10J↑ at t ¼ 17J−1↑ . (g) Shows the
behavior of P↑↓ (red circles), P↑↑ (blue squares), and P↓↓ (black
diamond) as a function of U↑↓ at t ¼ 10J−1↑ . The time evolution
of P’s are plotted in (h) and (i) for U↑↓ ¼ 5J↑ and 10J↑,
respectively, with L ¼ 82 sites.
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to the QW with the initial state jΨð0ÞiI, the signature of
doublon formation is weak in the four particle case with
symmetric hopping strengths.
Conclusions.—In summary, our findings suggest a route

to achieving local bound states in the QWs of initially non-
local bosons with only local interactions in the context of
the two-component Bose-Hubbard model. We have shown
that the nontrivial intercomponent bound states can be
formed at certain critical ratios of inter- and intracomponent
interaction strengths. By considering three particles in total,
an intercomponent bound pair is formed when both intra-
and intercomponent interactions are of equal strength.
However, when two particles from each component are
considered, a stable triplon is formed when the interspecies
interaction is half of the intraspecies ones. Moreover, we
have obtained that a finite hopping asymmetry between the
components plays an important role in favoring a more
stable intercomponent bound pair. We have also shown that
the QWs exhibit a reentrant phenomenon as a function of
the intercomponent interaction.
The many-body physics of two different types of

particles or two-component systems has been a topic of
great interest in its own right [39] in condensed matter
physics. Compared to the system with identical particles,
the two-component systems are a much richer platform
enabling access to a larger parameter space due to the
presence of both intra- and intercomponent interactions.
The present analysis opens up possibilities for further
exploration in the context of the quantum walk of
two component bosons such as the effects of NN inter-
actions and disorder. Because of the rapid progress in the
manipulation of ultracold binary atomic mixture in optical
lattices [40–46], many physical phenomena involving two-
component bosons, fermions, and Bose-Fermi mixtures
have been predicted [29,47–57] and observed [8,58,59] in
the framework of the Hubbard and the two-component
Bose-Hubbard models. Therefore, our findings can, in
principle, be simulated in a system of two-component
Bose mixture in optical lattices by controlling the inter- and
intracomponent interactions by the Feshbach resonance and
the individual hopping strengths by the state-dependent
optical lattice [29,60–63].
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