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Quantum optimal control (QOC) enables the realization of accurate operations, such as quantum gates,
and supports the development of quantum technologies. To date, many QOC frameworks have been
developed, but those remain only naturally suited to optimize a single targeted operation at a time. We
extend this concept to optimal control with a continuous family of targets, and demonstrate that an
optimization based on neural networks can find families of time-dependent Hamiltonians realizing desired

classes of quantum gates in minimal time.
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After concerted efforts in the development of synthetic
quantum systems we have access to a variety of systems
with sufficiently long coherence time to perform a series of
coherent operations. In the community’s effort to turn such
systems into technological applications, quantum optimal
control (QOC) [1,2] helps to increase the precision and
rate of desired operations. Common problems successfully
addressed by means of QOC include the realization of
quantum gates or entangled states in few-body or many-
body systems [3—11] and the refinement of metrology
protocols [12,13].

Current tasks of optimal control are mostly focused on
the realization of a single target operation, such as the
preparation of one specific state or the implementation of
one specific gate. Yet, as quantum technologies mature, it
becomes important to enlarge the range of operations which
can be accurately implemented on a device. For instance,
in the context of noisy-intermediate scale quantum devices
[14], augmenting the set of available elementary gates
allows for a more compact compilation of quantum circuits,
i.e., their decomposition into these elementary gates.
Already the inclusion of continuous families of 2-qubit
gates to a typical gate set, composed of 1-qubit rotations
and a 2-qubit entangling gate, can lead to a significant
reduction in gate count [15-17]. This, in turn, opens the
possibility to run more expressive computations before the
onset of decoherence, a key limitation in current technol-
ogy. That is, the ability to implement a broader range of
optimized operations has the potential to substantially
increase the utility of current quantum hardware.

Despite the many flavors of QOC frameworks that have
been proposed (e.g., Refs. [18-28]), the case remains that
current methodologies are only naturally suited to consider
a single control task at a time. We thus aim at lifting the
original scope of QOC from the control of a single target
operation to the control of continuous families of targets.
This is achieved with a neural network (NN) modeling the
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dependency between Hamiltonians to be engineered and
control tasks to be solved. Efficient training of the
framework by means of gradient descent is facilitated by
recent advances in the field of automatic differentiation
[29]. Such a framework, dubbed family control, is sketched
in Fig. 1 and is now explained in detail.

Typically, the central task in QOC is the identification of
the time-dependent Hamiltonian H(¢) that induces a
propagator U(¢) with desired properties. This is formulated
in terms of a cost functional Z[H ()] to be minimized. A
common example would be the task of realizing a target
controlled-not gate U® =]0)(0| ® I+ [1)(l| ® o, at a
given time 7, with the cost Z[H(t)] = ||U(T) — U
measuring the deviation between the controlled and target
propagators. A corresponding task of family control could
be the realization of the family of target gates Us' =
|0)(0] ® I +|1)(1| ® exp(—iac,) with variable angle a.
In this case, the overall task to be solved would be the
identification of a continuum of Hamiltonians H,(¢),
parametrized by the angle @, such that any of the
propagators U, = U,(t = T) induced by H,(t) approx-
imates the gate Uflgt as well as possible at + = T. The
corresponding functional would thus become Z[H,(t)] =
(|U, — UE"|), with an average over a.

The general formulation of such a family-control prob-
lem can be given in terms of the individual costs Z,[H,(1)],
where the target parameter a can be a single scalar or a
vector. The overall task to be solved is the identification of
the continuum of time-dependent Hamiltonians H () that
minimizes the averaged cost Z = (Z,[H,(1)]),-

In principle, this can be addressed as several control
problems to be solved separately for a discretized set of
target values {a'}, and, an additional step of interpolation
for any new target with a ¢ {a()}. Hardly any control
problem, however, has a unique solution, or at least a
unique solution that can be found in practice. That is, there
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FIG. 1. Optimal control of a continuous family of target gates
U indexed by the target parameter a which can be either a scalar
or a vector. The time-dependent controls f,(¢) which now also
depend on a are modeled by a neural network (NN). This NN
effectively parametrizes a continuous family of controlled gates
U, where each point corresponds to the propagator obtained by
evolving the system in time (dashed arrows) under the controls
produced by the NN (illustrated for two sets of target parameters
a® and o). Training of the framework consists in optimizing
the weights ¢y of the NN such that the deviation Z between the
controlled and target families of operations is minimized.

is no guarantee for two Hamiltonians H ) and H

identified as optimal for similar values of a(!) and a®,
to be themselves similar. Any attempt to find an optimal
Hamiltonian for a value of a between a(!) and (! in terms
of an interpolation between H 1) and H 2 can thus result in
a Hamiltonian that utterly falls to reahze the desired task.
To avoid this issue, it is desirable to require H, to depend
smoothly on a. Such a requirement can be realized by
means of an appropriate parametrization of the dependence
of H,(t) on both a and t. Given that NNs provide the
flexible structure to approximate multivariate continuous
functions up to arbitrary precision [30], these are deemed
ideally suited for the task at hand.

Time dependence in a Hamiltonian is typically realized
in terms of temporally modulated electromagnetic fields
that appear as one or several control functions f,(¢) in the
Hamiltonian. The scope of the NN is thus to model these
functions. To this intent, the parameters « and the time 7 are
taken to be the inputs of the NN, and the control values
fo(1) its outputs. An example of such a NN is illustrated in
Fig. 1 for the case of two-dimensional parameters « and a
single control function f,(z); it is readily adapted to
arbitrary dimensions of the parameters and number of

controls by varying the sizes of the inputs and outputs
accordingly.

The optimization—i.e., training of the NN-—can be
achieved with a variety of techniques, but gradient-descent
training has the advantage of simplicity and scalability to
high-dimensional problems. Since the propagators U,
induced by the Hamiltonians H, typically need to be
constructed numerically, efficient means to take derivatives
with respect to the control functions f,(z) are essential.
Recent advances in the field of automatic differentiation
[29] give access to efficient differentiation over numerical
solvers of differential equations. This allows one to
combine seamlessly gradients over the evolution of the
system and over the weights of the NN. Finally, even
though the evaluation of the averaged cost Z would always
be based on a sum over discrete values of « rather than a
proper integral, the output of the neural network is still
continuous in @, and choosing different random sampling
points at each step in the training process avoids finding
solutions with artifacts resulting from the sampling.
Implementation details can be found in Sec. I of the
Supplemental Material [31].

The following discussion exemplifies the framework
sketched so far, with the realization of quantum gates
induced by the n-qubit Hamiltonian

Zf Gx O_x +Zflv

i<j=1
()

with 1-qubit Pauli oy
interactions aﬁf)a)(cj ) between pairs of qubits (i, j). Overall,
C = 2n + n(n — 1)/2 time-dependent functions have to be
learned, including the 1-qubit f% (¢) and f%(z), and 2-qubit
controls f4 (). The Hamiltonian is sufficiently general so
that any desired n-qubit unitary can be realized [45], but
bounded control amplitudes {f¢, fa,f5} € [=1, 1] result
in a finite minimal time required to realize a glven unitary.
Deviations between controlled and target gates are char-
acterized by the gate infidelities

H,(1)= 1)+ fE(0e, (1)

and ogi) terms complemented with

TIH0) = 1~

Tr[UaU]? (2)
in the subsequent examples.

The basic workings of the framework can be illustrated
with the task of realizing the manifold of 1-qubit gates

Ul =exp (—i%az) exp (—1%0 > exp (—i%az) (3)

for the three-dimensional target parameters a with compo-
nents a;_; ,3 € [0, z], given the 1-qubit version of ()
in Eq. (1) and a fixed gate time 7 = z. Here, and in
all subsequent examples, the training stage is limited to 400
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FIG. 2. Control of the family of arbitrary 1-qubit rotations U,
defined in Eq. (3) with the Hamiltonian in Eq. (1). The framework
is successfully trained to implement any of the target rotations,
resulting in an average infidelity of 7 = 2 x 107* (assessed on
new targets not seen during training). To visualize the controls
produced by the NN, a; and a, are kept fixed to a value of 3z/4
and a3 is varied in the range [0, z]. The amplitudes of the two
control fields £ (a) and 1% (b) produced by the NN are plotted
as a function of both the time ¢ and a3 /7.

iterations, with each iteration corresponding to an average
of the gate infidelity in Eq. (2) taken over 128 values of the
parameters « uniformly sampled.

After training, the average gate infidelity Z = (Z,),
resulting from the controls identified as optimal by the
framework, is evaluated on an ensemble of 250 random
values of a. Crucially, this average is taken with respect to
new parameter values (i.e., corresponding to targets not
seen during training), and thus probes the ability of the
framework to realize any gates belonging to the targeted
family. In this example, the average infidelity is as low as
7 =2[3] x 107*, where the number in brackets indicates
the standard deviation of the distribution. Figure 2 depicts

the two control functions fi'(r) and f1(¢) [panels (a)
and (b) respectively] as functions of az/z and ¢ for
a; = a, = 37/4, substantiating that the solutions produced
by the NN are indeed well behaved, continuous functions
of both the parameters a and time 7.

A comparison between family control and current QOC
approaches is provided in Sec. II of the Supplemental
Material [31]. As discussed, the latter involves individual
optimizations of a discrete set of gates, and a subsequent
step of interpolation. Similar training complexity for the
individual approach is found for a discretization of each q;
in Eq. (3) over less than N, = 10 distinct values. Refining
such coarse discretization results in substantially increased
training effort—scaling cubically with N, given the 3D
nature of the gate’s family. More crucially, interpolating
between individual control solutions is found to often yield
close-to-vanishing fidelities.

In addition to an optimization of control functions, the
present framework is also well suited to identify a minimal
gate time 7', or even minimal target-dependent gate times
T, (Sec. IB of the Supplemental Material [31]). The latter is
achieved by introducing a second neural network with the

@ Infigelities (log10) (b) Times

- ) |25 m
3/ - \ 40 34 6718
g ™ p L 2 5m/8
e * ' —35 - /2
_~ _a_J) IR 0 318

]
0 e :
0 w4 w2 3m4 =« 0 w4 w2 3nm/4 w
%) (&%)

a

FIG. 3. Infidelities and times for the family U/, of rotations
when both the (target-dependent) control functions and times are
learned concurrently. For the sake of visualization, results are
plotted for a two-dimensional subset of the three-dimensional
family of targets, with fixed parameter a3 = 37/4, and discre-
tized ay,a, € [0,7] over a grid of 75 x 75 regularly spaced
points. For each of the corresponding target gates a heat map
indicates the values of the infidelities Z, achieved [panel (a), in
logarithmic scale] and the control times 7, entailed by the
framework [panel (b)].

gate time 7', as an output. Given the new cost Z, + u x T,
comprised of the gate infidelity and the gate time as a
penalty weighted with a scalar factor y > 0, this second
neural network can be trained similarly to the case
discussed above.

In Fig. 3 the results from such an optimization are
reported, with a small value 4 = 1072 of the weight suitable
to find high-fidelity gates close to the minimally required
time. Panel (a) depicts the infidelity Z, of the resulting
gates for a3 = 37/4 as a function of «; and a,. Typical
values are smaller than 1073, and the average infidelity
with the average taken over all three components of « is
T =4[5 x 107

Figure 3(b) depicts the target-dependent minimized
gate times, with again a fixed value of a3 =3x/4
but varied @; and a,. The shortest gate time is obtained
for a;=a,=0 (e, for the target parameters
a® =1[0,0,37/4]) in which case the constant control
amplitudes f;fo)(t) =1 and f;{;))(t) = 0 induce the desired
gate U, = exp[—i(37/8)c.] after a time T,0 = 37/8.
The obtained gate times grow with increasing values of ¢,
and a,, but always remain below the value of 7 used in the
above example.

While the ability to realize 1-qubit gates is of substantial
practical value, it is certainly not the challenging control
problem that helps to demonstrate the actual strength of the
framework. This is better achieved in terms of 2-qubit and
3-qubit gates that are building blocks of quantum algo-
rithms or digital quantum simulations.

Table I summarizes the results for a few selected families
of 2- and 3-qubit gates with the domain y of the parameters
a depicted in column 3 and the obtained average infidelities
(in multiples of 10™*) in column 4 (further details of the
NNs used are reported in Sec. IC of the Supplemental
Material [31]). The 2-qubit gates (i) to (iv) involve
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TABLE L.

Control under the Hamiltonian of Eq. (1) of families of n = 2 and 3 qubit gates, corresponding to C = 5
and 9 control functions to be learned respectively. For each problem the family of target U'

considered and the

domain y of the target parameters a are reported. Results are provided in terms of the average (and standard
deviations in brackets) infidelities Z, and of the ratio R between the average gate times resulting from a
decomposition in terms of elementary gates and the times necessitated by the framework. Additional elements of
training the families (vi) and (vii) are provided in the main text.

Ug z Z[1074] R
(@) 0)(0] ® I+ 1){1] ® exp(—iayot”) [0. 7] 1 20
(i) exp (—iay0Vo) [0, (z/2)] 0[0] 2.0
(iii) 10)(0| @ I +|1){1]| ® U}, [0, z]? 3[4] 2.1
@ exp(i E ey o)) 0. (x/2F 44 20
V) exp(—ia,o. )0(2)0(%)) [0, (z/2)] 110] 4.1
(v Xp(—1 ey ) o)) 0. (x/2)F o181 > 10
(vii) (1—|11><11|)®1+|11><11\®U1 [0, 7] 6[5] > 10

optimizations over C = 5 control functions, and the 3-qubit
gates (v) to (vii) involve C = 9 control functions.

Consistently with the previous findings, low infidelities
I <5x107* are achieved for any of the families of
2-qubit gates (i—iv) and for the one-dimensional family
of 3-qubit gates (v).

A straightforward application of the above framework to
the problems (vi) and (vii)—corresponding to nine time-
dependent controls to be learned and three-dimensional
families to be realized—however results in higher infidel-
ities [3[2.5] x 1073 for (vi) and 1.7[1.5] x 107> for (vii)]
than in the other cases. Yet, the results of the optimizations
contain clear indications toward steps to reach higher
fidelities that are now further discussed.

First, the lowest fidelities are systematically obtained for
values of a close to the boundary of its admissible domain y
[as can also be seen in Fig. 3(a)]. Enlarging the range of
values used for training by 20% resolves this effect.
Second, the control functions identified as optimal
have general properties that can be exploited to reduce
the number of independent functions that need to be
learned. In case (vi), the control solutions discovered by
the framework satisfy the relation f1} = fli = 32 =0,
and in case (vii) they satisfy f17 = f2 =0, & = f2 and

= f23. This indicates that only six and five independent
control functions, out of the nine possible, are needed for
cases (vi) and (vii) respectively. The infidelities listed in
Table I, for families (vi) and (vii), result from an opti-
mization with enlarged domain y and reduced number of
control functions, and their magnitude is comparable to
those of the other cases.

While generally the nonuniqueness of solutions of
optimal control problems makes it difficult to understand
why a solution returned by a specific algorithm does
achieve the goal that it is meant to achieve, it seems that
the requirement of smooth dependence on the parameters
helps the NN to identify common features of all control

pulses within the family and to avoid unnecessary terms in
the Hamiltonian that would obscure its working principle.

Beyond this conceptual benefit and the low infidelities
achieved, the gain in gate time is also of high practical
relevance. Since state-of-the-art implementation of uni-
taries on quantum devices relies on their decompositions in
terms of elementary gates, the times 79 entailed by such
decompositions provide well-defined baselines. Given the
freedom offered by the control Hamiltonian in Eq. (1) these
decompositions are performed in terms of the gate set of
rotations generated by the 1-qubit o, and ¢, and 2-qubit
0,0, operators, for which Qiskit’s [46] compiling routine is
employed with the highest level of optimization available
(Sec. II of Supplemental Material [31]).

Column 5 of Table I depicts the ratio R between the
averaged durations (79), obtained with compiled gate
circuits and the durations obtained with the present tech-
niques. In all cases there is an improvement of at least a
factor of 2, but, in cases (vi) and (vii), the improvement is
substantially larger. This suggests that compilation tech-
niques (i.e., discrete optimizations) struggle with these
complex 3-qubit gates, whereas the continuous optimiza-
tion realized in terms of NN does not suffer from these
limitations.

The ability to accurately control entire families of gates
in reduced time, especially for complex gates, highlights
the benefits of family control. Given that the automatic
differentiation techniques [29], that ensure the efficient
training of the framework, can be applied to any system of
ordinary differential equations (ODE), family control can
find a direct application to a broad range of quantum
systems, such as superconducting qubits. Since those are
nonlinear oscillators with a ladder of excited states, further
studies would include suppression of leakage to such states.
Similarly, trapped ions or optomechanical systems with
several interacting degrees of freedom pose control prob-
lems that can be addressed with the present techniques.
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Applying QOC to open systems [47-50] allows one to
take into account (and minimize) the detrimental effects of
an external environment, and is within the direct reach of
family control. The dynamics of open quantum systems is
mostly described by means of a master equation, effectively
an ODE, and is thus amendable to the methodology
described. While simulating such dynamics is inherently
more demanding than for closed systems, this overhead can
be mitigated by evolving only a constant number of
carefully selected initial states [48]. Going further, auto-
matic differentiation has now been extended to the treat-
ment of stochastic differential equations [51,52] such that
family control can also be applied to open systems
simulated with quantum trajectories [S0] and could even
generalize to problems of control with active feedback
[53,54].

While optimal control is traditionally realized in terms of
control pulses designed in numerical experiments, funda-
mental limitations in modeling and simulating the dynam-
ics of composite quantum systems resulted in a shift toward
designing control pulses in laboratory experiments
[55-58]. Just like many techniques for individual control
targets could be generalized to this setting, also family
control could be trained based exclusively on experimental
data, either in situations where gradients can be exper-
imentally estimated [59], or by resorting to gradient-free
optimization strategies [60].

Essentially, the methodology that was presented here
enables the control of a quantum system in different
contexts. In the examples investigated, this context was in
one to one correspondence with the target gate to be
realized, that is, the overall details of the system under
control were kept fixed and only the targets were varied.
More generally, the scheme based on NNs allows one to
tailor controls to be applied to any relevant context
variable. For instance, the inputs of the NN could also
include intrinsic details of the controlled system (such as
varied energy detunings [61] or sizes [62]) or extrinsic
(such as environmental heating rates [63] or nearby
operations inducing crosstalk [64]). Provided that the
effects of these context variables can be simulated and
that the corresponding optimal controls are expected to
vary continuously with these variables, one would learn
to accurately operate a quantum device in very broad
situations.
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