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Quantum low density parity check (LDPC) codes may provide a path to build low-overhead fault-
tolerant quantum computers. However, as general LDPC codes lack geometric constraints, naïve layouts
couple many distant qubits with crossing connections which could be hard to build in hardware and could
result in performance-degrading crosstalk. We propose a 2D layout for quantum LDPC codes by
decomposing their Tanner graphs into a small number of planar layers. Each layer contains long-range
connections which do not cross. For any Calderbank-Shor-Steane code with a degree-δ Tanner graph, we
design stabilizer measurement circuits with depth at most (2δþ 2) using at most ⌈δ=2⌉ layers. We observe a
circuit-noise threshold of 0.28% for a positive-rate code family using 49 physical qubits per logical qubit.
For a physical error rate of 10−4, this family reaches a logical error rate of 10−15 using fourteen times fewer
physical qubits than the surface code.
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Quantum error correction (QEC) is typically implemented
bymeasuring Pauli operators called stabilizer generators of a
QEC code to detect faults. In quantum low density parity
check (LDPC) codes, the stabilizer generators have low
weight,making themeasier to implement than general codes.
SomequantumLDPCcodes also have positive-rate, allowing
them to achieve arbitrarily low logical error rates with a
constant ratio of tens of physical qubits per logical qubit. For
large computations, this can correspond to more than 1 order
of magnitude lower qubit overhead than alternative codes
with vanishing rate such as the surface code. However, these
positive-rate LDPCcodes have nonlocal stabilizer generators
[1,2] making them somewhat daunting to implement in
hardware. In this Letter, we seek a practical implementation
of positive-rate quantumLDPCcodeswhich performswell in
a full circuit-level noise analysis.
To clarify our discussion, we define the connectivity

graph of a quantum circuit, with vertices corresponding to
qubits and edges connecting qubits coupled by circuit
operations. We can further define a layout as a specification
of the physical locations of the connectivity graph’s qubits
and connections. In this Letter, we are interested in circuits
which measure the stabilizer generators of a QEC code.
Given a family of codes, we focus on constant-depth
stabilizer measurement circuits to avoid a buildup of errors
which could spoil any fault-tolerance threshold.
A natural first question is if the nonlocal stabilizer

generators of positive-rate quantum LDPC codes can be
measured using a circuit with local connectivity in a 2D
qubit layout. In recent work [3], we show that although a
single nonlocal stabilizer can be measured in constant
depth, the full set of stabilizer generators cannot be
collectively measured in constant depth without the ratio
of logical to physical qubits vanishing.

Given that a 2D qubit layout with local connectivity is
excluded for positive-rate quantum LDPC codes, we
consider quantum hardware equipped with some set of
long-range connections. With unrestricted connections, one
could simply lay out the code qubits in a 2D grid along with
an ancilla for each stabilizer generator that has connections
to the code qubits in that stabilizer’s support. However, this
typically results in an unbounded number of crossing

FIG. 1. A crossing-free planar layout for hypergraph product
codes with four layers. Stabilizer generators are measured using
circuits built from single-qubit operations and CNOT gates
between qubits connected by an edge. The top two layers have
edges connecting qubits in the same row as shown in the
enlargement, while the lower two layers have edges connecting
qubits in the same column. Each layer is planar, such that no pair
of edges cross. For comparison, the lower right box shows the
nonplanar connections passing through the lower-left corner
before the decomposition, which exhibits many crossings.
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connections [4,5]; see Fig. 1. In many hardware platforms,
in addition to being challenging to implement, crossing
connections can spread error through crosstalk [6–9]. This
raises the following question:
Can we construct high-threshold constant-depth stabi-

lizer measurement circuits for positive-rate quantum LDPC
codes in a 2D qubit layout without crossings in the two-
qubit gate connectivity?
In this Letter, we provide a positive answer to this

question through the design of an l-planar layout, consist-
ing of qubits placed in a 2D grid, with edges separated into
l ¼ Oð1Þ planar layers, with no crossings in each layer; see
Fig. 1. Furthermore, we provide a circuit construction
consistent with this layered planar architecture to measure
the stabilizer generators of any Calderbank-Shor-Steane
(CSS)-type [10,11] quantum LDPC code in constant depth.
Theorem 1.—Let Q be a CSS code such that each

stabilizer generator has weight at most δ and each qubit is
involved in at most δ stabilizer generators. Then, one can
implement the measurement of all the stabilizer generators
of Q with a circuit with depth 2δþ 2 using a ⌈δ=2⌉-planar
layout.
Below, after proving this theorem, we refine these results

by specializing to a family of quantum codes known as
hypergraph product (HGP) codes [12] which are con-
structed from a pair of input graphs. In this case, we find
a low-depth stabilizer measurement circuit which reduces
to the standard circuit in the case of surface codes (Surface
codes are HGP codes formed when the input graphs are the
Tanner graphs of a pair of repetition codes) [13]. Moreover,
we prove in Lemma 1 that the circuit depth can be reduced
to δþ 2 when the vertices of the input graphs of the HGP
code admit a balanced ordering.
Lastly, we numerically explore the performance of these

circuits for a family of HGP codes using the decoding
routine of Grospellier and Krishna [14], but replacing their
idealized noise model with circuit noise. Using our layered
planar connectivity, we obtain a circuit-noise threshold of
2.8ð2Þ × 10−3, providing strong evidence that these codes
can offer a significant advantage over surface codes which
have a comparable threshold.
Quantum LDPC codes.—All the quantum codes we

consider in this work are CSS codes [10,11]. Recall that
a CSS code with length n is defined by a set of commuting
stabilizer generators sX;1;…; sX;rX ; sZ;1;…; sZ;rZ with
sX;i ∈ fI; Xgn and sZ;j ∈ fI; Zgn. The X Tanner graph
is the bipartite graph TX ¼ ðV; EÞ whose vertex set is V ¼
Vq ∪ VX where Vq ¼ fq1;…; qng is the qubit set and
VX ¼ fsX;1;…; sX;rXg. There is an edge between qi and
sX;j if and only if sX;j acts nontrivially on qubit qi. The Z
Tanner graph TZ is defined similarly from the Z stabilizer
generators, and the overall Tanner graph is their union
T ¼ TX ∪ TZ. The code is a quantum LDPC code if the
Tanner graph has bounded degree. Quantum error correc-
tion works by measuring all the stabilizer generators and
applying a correction based on the outcomes observed. Our

goal is to design practical stabilizer measurement circuits
for quantum LDPC codes.
We first show that quantum circuits with a low-degree

connectivity graph can be implemented with a layered
planar connectivity using a small number of layers. This
result applies to any quantum circuit (not just stabilizer
measurement circuits) and in particular to all low-depth
quantum circuits.
Proposition 1.—Let C be a circuit made with single-

qubit and two-qubit operations whose connectivity graph
has degree at most δ. Then, C can be implemented with a
⌈δ=2⌉-planar layout.
Proof.—This follows directly from the fact that for any

graph with degree at most δ, the smallest edge partition
such that each subgraph is planar involves at most ⌈δ=2⌉
subgraphs [15,16]. Furthermore, since any planar graph can
be drawn with arbitrary vertex location [17], we can fix the
position of each qubit across layers. ▪
We now introduce the coloration circuit associated with

an edge coloration of a Tanner graph that can be used for
any CSS code. (Reference [18] previously proposed a
scheduling of gates based on a vertex coloring. The
advantage of our approach is that the edge coloring we
use can be computed efficiently while the vertex coloring
problem of Ref. [18] is NP hard.) An edge coloration of a
graph is a coloration of the edges such that incident edges
support distinct colors. We will often consider a minimum
edge coloration, that is, an edge coloration with a minimum
number of colors.

Proposition 2.—Let Q be a CSS code with X Tanner
graph TX. Then, the coloration circuit measures all the
X stabilizer generators of Q in depth degðTXÞ þ 2.
Proof.—The controlled-not (CNOT) applied in step 3 can

be applied simultaneously because they correspond to
edges with the same color, guaranteeing they have disjoint
support. We see the circuit measures the X generators by
rearranging the CNOTs, which commute, to form a sequence
of single-generator measurement circuits. Each such circuit
prepares an ancilla in jþi, applies CNOTs from the ancilla to
the generator’s support, and then measures the ancilla in the
X basis. The depth of the coloration circuit is degðTXÞ þ 2
because the Tanner graph, which is bipartite, admits an
edge coloration with degðTXÞ colors [19]. ▪

Algorithm 1. Coloration circuit.

input : A minimum edge coloration CX of TX.
output: The measurement outcome of all X

stabilizer generators.
1 Prepare an ancilla in jþi for each generator sX;i.
2 for color c ∈ CX do
3 Simultaneously apply all gates CNOTi→j from

the ith ancilla to the jth data qubit supported
on an edge fi; jg with color c.

4 Measure each ancilla in the X basis.
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Swapping X and Z provides a Z stabilizer measurement
circuit with depth degðTZÞ þ 2. We now prove Theorem 1.
Proof of Theorem 1.—By Proposition 1, a circuit

extracting both X and Z syndromes with depth degðTXÞ þ
degðTZÞ þ 2 is formed by running the X and then the Z
circuit with two overlapping time steps. The connectivity
graph of the cardinal circuit has degree degðTÞ. Therefore,
Proposition 1 proves the existence of a ⌈ degðTÞ=2⌉-planar
layout. ▪
This depth may be further reduced by compressing the

circuit, interleaving X and Z stabilizer measurements.
However, the design of such a compression is nontrivial
because the CNOT gates involved in X and Z measurements
do not commute. Now we specialize to HGP codes for
which we provide an interleaved X=Z stabilizer measure-
ment circuit.
Hypergraph product codes.—The HGP code

HGPðG1; G2Þ [12] is defined from the Cartesian product
G1 ×G2 of two bipartite graphs [Fig. 2(a)]. Form ∈ f1; 2g,
let Vm ¼ Bm ∪ Cm be the vertex set of Gm and Em be its
edge set. The edges of Em connect a vertex of Bm with a
vertex of Cm. We assume that each vertex ofGm is given by
a label i ¼ 1;…; jVmj. Each pair ði; jÞ ∈ B1 × B2 ∪ C1 ×
C2 represents a data qubit of the HGP code while each pair
ði; jÞ in B1 × C2 (resp. C1 × B2) corresponds to an X
(respectively Z) stabilizer generator. The stabilizer gener-
ator with label ði; jÞ, denoted Sði;jÞ is supported on the
qubits with label ði0; jÞ where fi0; ig ∈ E1 and ði; j0Þ with
fj; j0g ∈ E2. To avoid confusion with the coordinates
introduced later which specify the physical locations of
qubits in a 2D layout, we refer to the pair ði; jÞ as a data
qubit label or stabilizer generator label.
We associate a direction N, S, E, W with each edge. An

edge between stabilizer vertex ði; jÞ and qubit vertex ði; j0Þ

with j0 ¼ jþ l (mod jV1j) has direction N if 0 < l ≤
jV1j=2 and direction S otherwise. We define the directions
E and W similarly for edges between stabilizer and
qubit vertices ði; jÞ and ði0; jÞ. For each direction
D ∈ fN;S;E;Wg, we consider the subgraph TD of the
Tanner graph T induced by the edges with direction D.
The following circuit interleaves X and Z measurements

and can achieve a depth lower than the coloration circuit.

Note that the CNOT is either aligned or antialigned with
an edge depending on the type of the stabilizer. The control
qubit of the CNOT is the ancilla for X stabilizers, and it is the
data qubit for Z stabilizers.
Proposition 3.—Let Q be a hypergraph product code

with Tanner graph T. Then, the cardinal circuit implements
the measurement of all the stabilizer generators of Q in
depth degðTNÞ þ degðTSÞ þ degðTEÞ þ degðTWÞ þ 2.
Proof.—It is easy to check that the depth of the cardinal

circuit is degðTNÞ þ degðTSÞ þ degðTEÞ þ degðTWÞ þ 2.
This is because the bipartite graph TD admits an edge
coloration with degðTDÞ colors [19].
We now prove by induction that the cardinal circuit

measures the stabilizer generators. Denote by Cm the circuit
obtained by applying the cardinal circuit construction to the
subset of stabilizer generators s1;…; sm. Clearly, for
m ¼ 1, the circuit Cðs1Þ measures the stabilizer generator
s1. Wewill show that the concatenation of Cm andCðsmþ1Þ,
that we denote CmCðsmþ1Þ, has the same action as Cmþ1.
If all the CNOT gates of Cðsmþ1Þ commute with all the

CNOTs of Cm, we can simply reorder the CNOTs of the
circuit CmCðsmþ1Þ to obtain the cardinal circuit Cmþ1.
Assume now that some CNOT gates of Cðsmþ1Þ do not
commute with the gates of Cm. Again, we would like to put
the CNOT of CmCðsmþ1Þ in the cardinal order, but swapping
these CNOTs produces extra CNOTs as one can see in
Fig. 2(d). We will show that these extra CNOTs cancel out.
If smþ1 is a Z stabilizer, the corresponding CNOTs only

fail to commute with CNOTs associated with the previous X
stabilizer generators si that overlap with smþ1. Swapping
these CNOTs produces an extra gate CNOTsi→smþ1

as shown
in Fig. 2(c). By the hypergraph product construction, if

(a)

(b)

(c)

FIG. 2. (a) The Tanner graph of an HGP code is the Cartesian
product of two bipartite input graphs. Here qubits are displayed
according to their label, which does not correspond to their
physical location in the 2D layout. (b) The four possible
configurations in which an X and a Z stabilizer can overlap.
Red arrows show the cardinal circuit ordering. (c) The commu-
tation of a pair of CNOT gates.

Algorithm 2. Cardinal circuit.

input : A minimum edge coloration CD of TD.
output: The outcome of the measurement of all

the X and Z stabilizer generators.
1 Prepare an ancilla in jþi for each X stabilizer

generator and an ancilla in j0i for each X
stabilizer generator.

2 for direction D ∈ fE;N;S;Wg do
3 for color c ∈ CD
4 Simultaneously apply all CNOT gates

supported on an edge of TD with color c.
5 Measure each X and Z ancilla in the X and Z

basis respectively.
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smþ1 overlaps with an X stabilizer generator si, their
overlap contains exactly two qubits, in one of the four
possible configurations of Fig. 2(b). To bring the CNOTs
into cardinal order, we need to perform either 0 or 2 swaps
between the CNOTs of smþ1 and si. This results in two
consecutive CNOT gates CNOTðsi; smþ1Þ which cancel out.
Thus, reordering the CNOT gates in CmCðsmþ1Þ to produce
Cmþ1 preserves the action of the circuit. A similar argument
applies when smþ1 is an X stabilizer generator. Applying
this inductively starting with a single stabilizer generator,
we reach the cardinally ordered circuit proving that it has
the same action as the initial stabilizer measurement
circuit. ▪
From Proposition 3 we see that the cardinal circuit only

has a lower depth than the coloration circuit if the Tanner
subgraphs TD have sufficiently low degree. To ensure this,
we must order the vertices ði; jÞ of the Tanner graph to
distribute the edges more equally between the four direc-
tions around each vertex. This motivates the notion of
balanced ordering that we introduce now.
A balanced ordering for a graph G ¼ ðV; EÞ is a

labeling of the vertices by integers i ¼ 1;…; jVj such that
for each vertex i we have δþðiÞ − δ−ðiÞ ¼ ½δðiÞ mod 2�
where δþðiÞ is the number of vertices connected to i of the
form (iþ l) (mod jVj) with 0 < l ≤ jVj=2 and
δ−ðiÞ ¼ δðiÞ − δþðiÞ. When the graph is not clear from
the context, we will use the notation δ�ðG; iÞ ¼ δ�ðiÞ.
The following lemma is proven in the Supplemental
Material [20].
Lemma 1.—Let Q ¼ HGPðG1; G2Þ be a hypergraph

product code. Then, we have

degðTÞ ≤
X

D¼N;S;E;W

degðTDÞ ≤ 2 degðTÞ:

Moreover, if G1 and G2 have only even degree vertices and
admit a balanced ordering, then the lower bound is tight.
For HGP codes based on even, balanced graphs, this

lemma, combined with Proposition 3, proves that the depth
of the cardinal circuit is about half that of the coloration
circuit.
Numerical results.—We use the standard circuit noise

model to simulate the performance of a family of HGP
codes with parameters ½½25s2; s2��, i.e., encoding k ¼ s2

logical qubits into n ¼ 25s2 physical qubits; see Fig. 3.
This code family has stabilizer generators of weight 7, and
each qubit is contained in the support of either six or eight
stabilizer generators. The syndrome extraction is performed
with the cardinal circuit using 24s2 ancilla qubits.
We use a simple extrapolation of the data to estimate a

threshold of pt ¼ 2.8ð2Þ × 10−3 and compare the qubit
overhead with that of the surface code in Table I. Based on
our simulation, we propose the heuristic formula

PLðp; kÞ ¼ c1ðp=ptÞc2kc3 ð1Þ

where c1 ¼ 0.64, c2 ¼ 1.3, c3 ¼ 0.21, and k ¼ 24s2 to
provide an estimate of the logical failure rate per round
with physical error rate p < pt. Further details on our
numerical approach including the code construction [21],
the noise model, belief propagation [22,23], and small set
flip decoding [24] can be found in the Supplemental
Material [20].
Outlook and hardware challenges.—We have shown that

syndrome extraction can be implemented in constant depth
using a planar layout for any CSS quantum LDPC code,
including HGP codes, but also many other families of
interest including hyperbolic codes [26] and homological
product codes [27]. Our design simultaneously seeks to
minimize the depth of the stabilizer measurement circuit
which achieves faster quantum error correction and reduces
the time allowed for error buildup, while also avoiding
crossings of the connections that couple qubits which is
expected to improve fabrication and reduce crosstalk.
Further improvements could come from optimizing the

TABLE I. Total number of data and ancilla qubits required to
achieve specific logical failure rates with a physical error rate of
10−4 using surface codes and HGP codes. The HGP code data are
found from an extrapolation of the fits in Fig. 3, while the surface
code data are estimated using the formula P0

Lðp; k; dÞ ¼
akðp=p0

tÞðdþ1Þ=2 with optimistic values of p0
t ¼ 0.011 and a ¼

0.03 from Ref. [13] and Ref. [25].

Logical failure rate 10−9 10−12 10−15

Logical qubits 1600 6400 18 496
Surface code physical qubits 387 200 2 880 000 13 354 112
HGP code physical qubits 78 400 313 600 906 304
Improvement using HGP codes 4.94× 9.18× 14.73×

FIG. 3. The failure rate per round averaged over ten successive
rounds of error correction. The dashed lines are obtained using
PLðp; kÞ ¼ c1ðp=ptÞc2kc3 finding fitting constants c1 ¼ 0.64,
c2 ¼ 1.3, c3 ¼ 0.21 and the threshold pt ¼ 2.8ð2Þ × 10−3.
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circuit to minimize the spreading of errors [28] using better
decoders [29–32], or by leveraging improved planar graph
algorithms. Moreover, it would be interesting to further
study logical operations for quantum LDPC codes [33–36].
We hope that these significant quantum error-correction

advantages will motivate experimental teams to overcome
the challenges to build quantum hardware in planar layouts.
We foresee two major obstacles. Firstly, our design requires
a number of long-range links within each layer. Significant
experimental progress has been made in that direction using
for instance photonic couplings to establish long-range
connections [37–44] but it is unclear which of these
approaches could be scaled to larger systems. Secondly,
there is a tension between the need for insulation between
the layers to reduce crosstalk and the fact that data qubits
must participate in all layers.

The authors would like to thank David Poulin for his
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