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Quantum pseudotelepathy is a strong form of nonlocality. Different from the conventional nonlocal
games where quantum strategies win statistically, e.g., the Clauser-Horne-Shimony-Holt game, quantum
pseudotelepathy in principle allows quantum players to with probability 1. In this Letter, we report a
faithful experimental demonstration of quantum pseudotelepathy via playing the nonlocal version of
Mermin-Peres magic square game, where Alice and Bob cooperatively fill in a 3 × 3 magic square. We
adopt the hyperentanglement scheme and prepare photon pairs entangled in both the polarization and the
orbital angular momentum degrees of freedom, such that the experiment is carried out in a resource-
efficient manner. Under the locality and fair-sampling assumption, our results show that quantum players
can simultaneously win all the queries over any classical strategy.
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Quantum advantages have been found in various areas of
quantum information processing, from communication and
computation to materials and engineering [1–4]. Such
advantages come from quantum resources, which could
be entanglement, nonlocality, indistinguishability, and so
on [5–7]. Quantum games have been widely used to reveal
such quantum resources in an operational manner [8–18]:
the players equipped with a certain quantum resource can
achieve better performance than those with classical ones.
To better understand and use quantum advantages, it is
important to design and develop experiments to realize
such quantum games.
Quantum pseudotelepathy [17] is a special class of

quantum games: it allows quantum players to win the
game with probability 1. This distinguishes itself from
conventional quantum games, where quantum players win
the game statistically. For instance, in the Clauser-Horne-
Shimony-Holt game [9], quantum players win the game
best with a probability approximately 0.85 on average [19].
There have been several types of pseudotelepathy games,
including the Mermin-Greenberger-Horne-Zeilinger game
[10,11,20], the Deutsch-Jozsa game [16], and arguably one
of the most interesting nonlocal games, the Mermin-Peres
game [12,13].
The Mermin-Peres game is of great interest due to its

simplicity and significance in quantum foundation. In this
game, the players are requested to fill in a 3 × 3magic square
with certain constraints (see the detailed description below).
It can be played by a single player via sequential filling or by

two separated players via cooperative filling. The single-
player version of the game reveals the contextuality of
quantum theory [8,14,21,22] and has been carried out in
various platforms [22–28]. The two-player version of the
game, which is the focus of this work, can be used to detect
nonlocality. Particularly, the game has also been proven as
the simplest for showing quantum pseudotelepathy, in the
sense that it involves only two players and the number of
required referee’s queries isminimized [29].Wenote that the
deep connection between nonlocality and contextuality has
been explored; see, e.g., Refs. [30–36].
In the aspect of nonlocality experiments, the loophole-

free Bell tests have been carried out using the single-copy
two-qubit states [37–40]. Unfortunately, a faithful realiza-
tion of the nonlocal Mermin-Peres game is still experi-
mentally challenging and consuming, as it requires one to
distribute two two-qubit entangled states and to carry out
local measurements on two qubits from different entangled
pairs. Meanwhile, the game is in principle designed to be
won with unit probability, which can never happen in
realistic experiments with errors and noises. One is required
to employ high-fidelity state preparation and measurement
in experiment to beat the winning threshold. Recently, a
scheme based on quantum dots inside optical cavities was
also proposed [41].
In this Letter, we faithfully demonstrate the Mermin-

Peres game, and therefore quantum pseudotelepathy, using
a full-photonic setup in a resource-efficient manner. We
adopt hyperentangled photons and encode two maximally
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entangled states on one pair of photons using 2 degrees of
freedoms (DoFs), namely, the polarization and orbital
angular momentum (OAM) degree. Such an architecture
strongly reduces the experimental overheads in prepara-
tions, and more importantly increases the coincidence in
detection compared with the common four-photon scheme.
Furthermore, we use quantum random numbers [42] to
select queries, which in principle guarantees intrinsic
randomness. By assuming fair sampling and locality, we
conclude that the players with hyperentangled states can
outperform any classical strategy to win all queries with
significant high probabilities.
Mermin-Peres game.—In the Mermin-Peres game, two

players, Alice and Bob, are required to independently fill a
3 × 3 magic square. As shown in Fig. 1, the referee
randomly sends two queries x; y ∈ f0; 1; 2g to Alice
and Bob, respectively. Here, x labels rows and y labels
columns. Alice and Bob are required to reply with three
numbers with specific conditions. Denote Alice’s
answers in a row as ½ax0; ax1; ax2� and Bob’s answers in a
column as ½by0; by1; by2�T , where axi ; b

y
j ∈ f−1;þ1g for any

i; j ∈ f0; 1; 2g. Alice’s answers must satisfy
Q

i a
x
i ¼ þ1,

while Bob’s should satisfy
Q

j b
y
j ¼ −1 for any x and y.

During the game, Alice and Bob are forbidden to commu-
nicate with each other. They win the game if the overlapped
entry of Alice’s row and Bob’s column is always the same,
i.e., axy ¼ byx for each x and y.
Classical strategies cannot always win the game. One

can prove it by contradiction [12,13]. Considering a
deterministic classical strategy that gives definite answers
when receiving queries x or y. Then, if one multiplies all

Alice’s answers, she would have
Q

x;i a
x
i ¼ þ1, while if

one multiplies all Bob’s answers, he would haveQ
y;j b

y
j ¼ −1. That is, for any deterministic classical

strategy, Alice and Bob cannot successfully fill the same
number for all entries in the square. There are nine optimal
deterministic strategies, as depicted in Table. I. For each
strategy, Alice and Bob win eight out of the total nine query
pairs ðx; yÞ. A general classical strategy can be viewed as a
mixture of deterministic strategies, so one can conclude that
any classical strategy cannot simultaneously win each
query pair with probabilities higher than 8=9 [43]. We
will use this criterion to verify the quantum pseudotele-
pathy in our experiment. We also refer the classical strategy
that wins each query pair with probability 8=9 as the
unbiased optimal classical strategy.
Quantum strategies can successfully fill every entry of

the square with probability 1. Suppose that in each round
two maximally entangled states jΨiA1A2B1B2

¼ jψiA1B1
⊗

jψiA2B2
with jψi ¼ ðj00i þ j11iÞ= ffiffiffi

2
p

are distributed to
Alice and Bob, where Alice has systems A1A2 and Bob
has B1B2. After the referee sends them queries x and y,
respectively, they independently perform measurements

Mðx;iÞ
A and Mðy;jÞ

B , and obtain answers axi and byj . The
measurement strategy is given in Table II. In this table, the
measurements in each row or in each column are pairwise
commutative such that they can be jointly measured [44]. It
can be verified that for all x and y, the product of Alice’s

output is always þ1, as
Q

i M
ðx;iÞ
A ¼ I, while the product of

Bob’s output is always−1, as
Q

j M
ðy;jÞ
B ¼ −I. For the game,

Alice and Bob will always win each entry since

hΨjMðx;yÞ
A ⊗ Mðy;xÞ

B jΨi ¼ 1∀ x; y, i.e., they have same
value axy ¼ byx, which exhibits quantum pseudotelepathy.
As a comparison, recall that for the usual nonlocal game
(e.g., the Clauser-Horne-Shimony-Holt game), quantum
strategies cannot win each query with probability 1. In this
sense, quantum pseudotelepathy is a stronger form of
nonlocality.
Experimental implementation.—The crucial part for our

experiment is the generation of hyperentangled state. Note
that, if one prepares the entangled states individually, say,
two entangled photon pairs, and perform four-photon
coincidence in the measurement, not only the setup can
be complicated, but also the detection efficiency will
significantly drop down. Instead, we seek a hyperentangled
photon pair and encode two entangled states into 2 DoFs,
i.e., polarization and OAM. We use jHi, jVi, jri, and jli to
represent the horizontal polarization, vertical polarization,
right-handed OAM of þℏ, and left-handed OAM of −ℏ,
respectively. The prepared state is in the form of

jΨi ¼ jψipol⊗ jψioam ¼ jHHi þ jVVi
ffiffiffi
2

p ⊗
jrli þ jlri

ffiffiffi
2

p : ð1Þ

FIG. 1. The Mermin-Peres magic square game. The referee
randomly sends x and y to Alice and Bob, respectively. Alice and
Bob reply with three numbers, either þ1 or −1, in a row and in a
column, respectively. They win the game if the overlapped entry
is the same.
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To produce the hyperentangled photon pairs, two pieces
of 0.6 mm thick, identically cut type-I β-barium borates
(BBO) crystals with optic axes in perpendicular planes are
glued together for spontaneous parametric down-conver-
sion [45,46] and pumped by ultrafast laser pulses with
central wavelength of 390 nm, pulse duration of 150 fs,
average power of 40 mW, and repetition rates of 80 MHz.
The spatial and temporal walk-offs are compensated by
birefringence crystals. When a hyperentangled photon pair
is created, one photon is sent to Alice and the other one is
sent to Bob. At the same time, the referee employs a series
of quantum random numbers [42] and distributes random
numbers 0, 1, or 2 as queries to Alice and Bob.
Followed by the creation of the hyperentangled state, one

needs to jointly measure the results of each of the rows and
columns of Table II. Notice that the observables in each of
the rows or columns are mutually commuting, which means

they have the common eigenstates [47]. For Alice, we
choose ZZ basis for the first row, XX basis for the second,
and graph state basis [44] for the last. As for Bob, we
choose XZ basis for the first column, ZX basis for the
second, and Bell state basis [44] for the last. Obtaining
the expectation values of all nine observables requires
3 × 3 ¼ 9 settings. We therefore design the measurement
setup to implement nine settings, as shown in Fig. 2. As a
faithful demonstration of the game, the measurement
settings are freely switchable. To achieve this, we insert
half-wave plates (HWPs) before the polarization interfero-
metric prisms (PIPs), as shown in Fig. 2(b), and use stepper
motors to independently drive HWPs 1–8 to 0° and 22.5°,
depending on the received random number.
As an illustration of how the measurement settings are

implemented, here we consider the case of ðx; yÞ ¼ ð0; 2Þ.
When random numbers ðx; yÞ ¼ ð0; 2Þ are generated and
sent to Alice and Bob, respectively, their stepper motors are
triggered such that ZZ is measured at Alice’s side while
Bell state measurement is measured at Bob’s side. For the
measurement ZZ, a readout of qubits encoded in polari-
zation and OAM is performed as follows. Polarization qubit
is first read out with a standard polarization analyzer, which
consists of one HWP, one polarizing beam splitter (PBS).
After the PBS, the two paths, transmission and reflection
of photons, correspond to two outcomes [as shown in
Fig. 2(c)]. While for qubits encoded in OAM, a swap gate is
then used to transfer the OAM information to polarization,
followed by another polarization analyzer [48].
For the measurement under Bell basis, an additional

polarization-OAM CNOT gate is employed. The CNOT
gate is implemented with a PIP [49], where two prisms are
glued to each other with PBS coating inside [as shown in

TABLE II. Optimal quantum strategy. The X, Y, and Z are three
Pauli matrices. When receiving queries x and y, Alice and Bob
select the xth row (yth column) of observables to measure their
systems. They win all queries with probability 1.

TABLE I. Nine deterministic optimal classical strategies. Here, # ¼ þ1 for Alice and # ¼ −1 for Bob. When
receiving queries x and y, Alice and Bob select one table via preshared randomness and reply with the xth row and
yth column, respectively. If they uniformly select tables, they would have on average a winning probability 8=9 for
each query.
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Fig. 2(b)]. In this way, jHi and jVi components of the input
photon are split into different prisms, and then recombined
after different-parity number reflections. The topological
charge of an OAM state is kept after an even number of
reflections and inverted after an odd number of reflections.
Thus, at the output of PIP, X or I can be performed on the
OAM qubit according to whether the polarization is jVi or
not, such that the CNOT gate is realized. (Please refer to
Supplemental Material [44] for details about other
measurements.)
Results.—To ensure that the hyperentangled state in

Eq. (1) is successfully generated in the experiment, we
measure the fidelity of the prepared state. The density
matrix ρ ¼ jΨihΨj can be expressed as

ρ ¼ 1

16
ðII þ XX − YY þ ZZÞ ⊗ ðII þ XX þ YY − ZZÞ;

ð2Þ
where X, Y, and Z are three Pauli operators and I is the
identity matrix. We thus measure the expectation values of
all involved nine observables, i.e., XXXX;XXYY;…;
ZZYY, and ZZZZ. This is done by reading out all 16
outcome combinations of each four-qubit observable. The
fidelity of our prepared state is F ¼ 0.928ð1Þ with respect
to the ideal state in Eq. (2) [44].
In the experiment, every coincidence event represents a

round of the game. As a result, we totally play 1 075 930

rounds of the game during which 1 009 610 rounds are
won. The average winning probability is 0.9384(2), which
is more than 247 standard deviations. The precise winning
probability for each query pair ðx; yÞ is shown in Fig. 3.
Compared to classical bound 8=9 (≈88.89%) for each
query pair, we observe that the quantum theory enables
players to win all the cases with probabilities over 91%.
This implies that the quantum strategies can outperform
any classical strategy (e.g., the unbiased classical optimal
strategy). Because of the noise from the multiphoton
emission of parametric down-conversion and the imper-
fection of the optical interferometers, the ideal 100%
winning probabilities cannot be achieved in a real experi-
ment. Nevertheless, one can conclude that no classical
strategy can outperform the experimental result in Fig. 3,
since any mixture of deterministic classical strategies (as
shown in Table I) win all nine queries with probabilities
higher than 8=9 simultaneously. We remark that the average
winning probability is slightly larger than the fidelity of the
hyperentangled state because the polarization entangled
qubits and the OAM entangled qubits involve different
types of noises.
Conclusion.—Quantum pseudotelepathy has been

shown to have applications for quantum communication
complexity. We experimentally demonstrated the quantum
pseudotelepathy by playing the Mermin-Peres game. We
adopted multi-DoF encoding of hyperentangled photon
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FIG. 2. Experimental setup to play quantum magic square game. (a) The generation of two-photon Polarization- and OAM
hyperentangled state. (b) Polarization interferometric prism (PIP). Implement a Polarization-OAM Controlled-NOT (CNOT) gate for
single photons with the polarization acting as the control qubit and the OAM as the target qubit. The HWP with a WiFi sign represents
HWP that changes angle according to QRN (quantum random number). (c) Polarization measurement (d) Dual-channel OAM readout
by coherently convert OAM to the polarization by a swap gate (inset). (e) Quantum random number sends 0, 1 and 2 to Alice and Bob,
where 0, 1 and 2 denote the first, second and third row or column in the game, respectively.
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pairs to reduce the experimental overheads, and prepared
hyperentangled state with high fidelity. Quantum random
numbers are exploited to generate the referee’s queries. The
experiment shows that, under an assumption of locality and
fair sampling, the quantum players can fill the magic square
more successfully than any classical strategy. To close all
loopholes in this experiment, not only Alice and Bob
should satisfy spacelike separation during the game, but
also the overall detection efficiency should be higher than
87.5% [44], which is much more difficult than the loop-
hole-free Bell test. Additionally, the Mermin-Peres game is
extensively used as a certification of quantumness of
devices in recent research. It is an important open question
to find many practically useful tasks for this game. Our
result will explicitly stimulate the design and investigation
of novel protocols based on known quantum games,
especially for quantum communication [50] and random-
ness expansion [51].

We gratefully acknowledge enlightening discussions
with Nai-Le Liu, Li Li, Liuwu Wang, and Francesco
Buscemi when starting this work, and thank Xin-Yu Xu,
Yihan Luo, Yingqiu Mao for valuable discussion. We are
also grateful to the anonymous referees for their very
constructive comments about improvements of this work.
This work was supported by the National Natural Science
Foundation of China (Grants No. 62031024, 11575174,
11922406, 12005091), National Key R&D Program of
China (2019YFA0308700), the Chinese Academy of
Sciences, the Anhui Initiative in Quantum Information
Technologies, and the China Postdoctoral Science
Foundation (No. 2020M671856).

J.-M. X. and Y.-Z. Z. contributed equally to this work.

*Corresponding author.
kaichen@ustc.edu.cn

†Corresponding author.
xilinwang@nju.edu.cn

‡Corresponding author.
htwang@nju.edu.cn

[1] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M.
Head-Gordon, Simulated quantum computation of mole-
cular energies, Science 309, 1704 (2005).

[2] Y. Liu, Q. Zhao, M.-H. Li, J.-Y. Guan, Y. Zhang, B. Bai, W.
Zhang, W.-Z. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z.
Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J.-W.
Pan, Device-independent quantum random-number gene-
ration, Nature (London) 562, 548 (2018).

[3] F. Arute et al. (Google AI Quantum and Collaborators),
Hartree-Fock on a superconducting qubit quantum
computer, Science 369, 1084 (2020).

[4] H.-S. Zhong et al., Quantum computational advantage using
photons, Science 370, 1460 (2020).

[5] J. S. Bell, Speakable and Unspeakable in Quantum
Mechanics:CollectedPapersonQuantumPhilosophy, 2nd ed.
(Cambridge University Press, Cambridge, England, 2004).

[6] N. D. Mermin, Hidden variables and the two theorems of
John Bell, Rev. Mod. Phys. 65, 803 (1993).

[7] E. Chitambar and G. Gour, Quantum resource theories, Rev.
Mod. Phys. 91, 025001 (2019).

[8] S. Kochen and E. P. Specker, The problem of hidden
variables in quantum mechanics, J. Math. Mech. 17, 59
(1967).

[9] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Proposed Experiment to Test Local Hidden-Variable
Theories, Phys. Rev. Lett. 23, 880 (1969).

[10] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going
beyond Bell’s theorem, in Bell’s Theorem, Quantum Theory
and Conceptions of the Universe, edited by M. Kafatos,
Fundamental Theories of Physics (Springer Netherlands,
Dordrecht, 1989), pp. 69–72.

[11] N. D. Mermin, Quantum mysteries revisited, Am. J. Phys.
58, 731 (1990).

[12] N. D. Mermin, Simple Unified Form for the Major
No-Hidden-Variables Theorems, Phys. Rev. Lett. 65,
3373 (1990).

[13] A. Peres, Incompatible results of quantum measurements,
Phys. Lett. A 151, 107 (1990).

[14] A. Peres, Two simple proofs of the Kochen-Specker
theorem, J. Phys. A 24, L175 (1991).

[15] J. Eisert, M. Wilkens, and M. Lewenstein, Quantum Games
and Quantum Strategies, Phys. Rev. Lett. 83, 3077 (1999).

[16] G. Brassard, R. Cleve, and A. Tapp, Cost of Exactly
Simulating Quantum Entanglement with Classical
Communication, Phys. Rev. Lett. 83, 1874 (1999).

[17] G. Brassard, A. Broadbent, and A. Tapp, Quantum
Pseudo-Telepathy, Found. Phys. 35, 1877 (2005).

[18] M.M. Wilde, Quantum Information Theory, 2nd ed.
(Cambridge University Press, Cambridge, England, 2017).

[19] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and
S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419
(2014).

[20] J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and
A. Zeilinger, Experimental test of quantum nonlocality in

97.12 96.51
93.06 92.71

95.30
91.68 91.47 92.62 94.27

(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)
0%

20%

40%

60%

80%

100%

P
ro

ba
bi

lit
y

Query pair (x,y)

Winning probability

Classical
8/9

FIG. 3. Summary of results. The winning probability for each
query pair ðx; yÞ is calculated from experimental data. The
standard deviation is less than 0.01%, which is negligible in
the histogram. The dotted blue line represents the unbiased
classical bound 8=9.

PHYSICAL REVIEW LETTERS 129, 050402 (2022)

050402-5

https://doi.org/10.1126/science.1113479
https://doi.org/10.1038/s41586-018-0559-3
https://doi.org/10.1126/science.abb9811
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1103/RevModPhys.65.803
https://doi.org/10.1103/RevModPhys.91.025001
https://doi.org/10.1103/RevModPhys.91.025001
https://doi.org/10.1007/978-94-010-1795-4_17
https://doi.org/10.1007/978-94-010-1795-4_17
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1119/1.16503
https://doi.org/10.1119/1.16503
https://doi.org/10.1103/PhysRevLett.65.3373
https://doi.org/10.1103/PhysRevLett.65.3373
https://doi.org/10.1016/0375-9601(90)90172-K
https://doi.org/10.1088/0305-4470/24/4/003
https://doi.org/10.1103/PhysRevLett.83.3077
https://doi.org/10.1103/PhysRevLett.83.1874
https://doi.org/10.1007/s10701-005-7353-4
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419


three-photon Greenberger-Horne-Zeilinger entanglement,
Nature (London) 403, 515 (2000).

[21] A.Cabello, Experimentally Testable State-Independent Quan-
tum Contextuality, Phys. Rev. Lett. 101, 210401 (2008).

[22] C. Budroni, A. Cabello, O. Gühne, M. Kleinmann, and J.-Å.
Larsson, Quantum Contextuality, arXiv:2102.13036.

[23] Y.-F. Huang, C.-F. Li, Y.-S. Zhang, J.-W. Pan, and G.-C.
Guo, Experimental Test of the Kochen-Specker Theorem
with Single Photons, Phys. Rev. Lett. 90, 250401 (2003).

[24] G. Kirchmair, F. Zähringer, R. Gerritsma, M. Kleinmann, O.
Gühne, A. Cabello, R. Blatt, and C. F. Roos, State-
independent experimental test of quantum contextuality,
Nature (London) 460, 494 (2009).

[25] X.-M. Hu, J.-S. Chen, B.-H. Liu, Y. Guo, Y.-F. Huang, Z.-Q.
Zhou, Y.-J. Han, C.-F. Li, and G.-C. Guo, Experimental Test
of Compatibility-Loophole-Free Contextuality with Spa-
tially Separated Entangled Qutrits, Phys. Rev. Lett. 117,
170403 (2016).

[26] M. Jerger, Y. Reshitnyk, M. Oppliger, A. Potočnik, M.
Mondal, A. Wallraff, K. Goodenough, S. Wehner, K.
Juliusson, N. K. Langford, and A. Fedorov, Contextuality
without nonlocality in a superconducting quantum system,
Nat. Commun. 7, 12930 (2016).

[27] A. Dikme, N. Reichel, A. Laghaout, and G. Björk,
Measuring the Mermin-Peres magic square using an online
quantum computer, arXiv:2009.10751.

[28] D. Qu, K. Wang, L. Xiao, X. Zhan, and P. Xue, State-
independent test of quantum contextuality with either single
photons or coherent light, npj Quantum Inf. 7, 154 (2021).
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