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Measurement and feedback control are essential features of quantum science, with applications ranging
from quantum technology protocols to information-to-work conversion in quantum thermodynamics.
Theoretical descriptions of feedback control are typically given in terms of stochastic equations requiring
numerical solutions, or are limited to linear feedback protocols. Here we present a formalism for continuous
quantum measurement and feedback, both linear and nonlinear. Our main result is a quantum Fokker-
Planck master equation describing the joint dynamics of a quantum system and a detector with finite
bandwidth. For fast measurements, we derive a Markovian master equation for the system alone, amenable
to analytical treatment. We illustrate our formalism by investigating two basic information engines, one
quantum and one classical.
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Introduction.—Quantum measurement and feedback
control are key elements for emerging quantum techno-
logies, enabling a wide range of applications, including
quantum error correction [1], deterministic entanglement
generation [2], atomic clocks [3], and quantum state
stabilization [4–6]. The past two decades have also wit-
nessed a large number of fundamental experiments on
feedback control of quantum systems [7–18]. Of special
interest are experiments in quantum thermodynamics [19]
—by using measurement and feedback, processes that are
otherwise forbidden by the second law of thermodynamics
may be realized, compellingly illustrated by Maxwell’s
demon [20–22]. Over the past ten years, the demon has
been realized in a wide range of experimental settings, both
in classical [23–29] and, recently, quantum systems [30–
34]. This activity has inspired further work investigating
the connection between thermodynamics and information
theory [35–37], and has resulted in generalizations of the
second law for feedback controlled systems [38–48]. A
promising platform for exploring feedback control within
quantum thermodynamics is solid-state electronic systems
[49], ranging from semiconductor quantum dots [50] to
superconducting qubits [51]. Key features in these systems
are large and fast tunability of system properties [52–54]

and time resolved measurements [55,56]. Moreover, both
discrete [29,57,58] and continuous [6,27] feedback proto-
cols have been demonstrated experimentally.
The theoretical description of feedback control in quan-

tum systems is typically based on stochastic differential
equations [59–70]—powerful tools that can describe dis-
crete as well as continuous feedback protocols. In general,
these equations must be solved numerically, providing
limited qualitative insight. An important exception, ame-
nable to analytical treatment, is the Wiseman-Milburn
equation [63], a Markovian master equation for continuous
feedback protocols that depend linearly on the measured
signal. However, optimal control often requires nonlinear
protocols, for instance, bang-bang control [71,72] which
has promising thermodynamic applications in solid-state
architectures [27,73–75]. For such continuous, nonlinear
feedback protocols, no master equation description exists,
emphasizing a need for further analytical tools. We stress
that the word “nonlinear” here refers to the protocol’s
dependence on the measured signal, not to the system’s
dynamics.
In this Letter, we satisfy this need by developing a

general framework for continuous measurement and feed-
back control in quantum systems, able to provide analytical
insight into nonlinear feedback protocols. Our main result,
Eq. (1) below, is a quantum Fokker-Planck master equation
describing the joint dynamics of a quantum system and a
detector with finite bandwidth (see Fig. 1). This equation is
applicable to any quantum or classical system undergoing
continuous feedback control. For fast measurements,
Eq. (1) reduces to a Markovian master equation for the
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system alone, generalizing the Wiseman-Milburn equation
to nonlinear feedback protocols. The broad scope of Eq. (1)
suggests that our results will impact a wide variety of topics
where nonlinear, continuous feedback control can be
applied, such as quantum error correction [1], entanglement
generation [2], quantum state stabilization [6], Maxwell’s
demon [74,75], and machine learning [76].
To illustrate our formalism, we investigate two toy

models, a classical and a quantum two-level system,
operated via nonlinear feedback protocols. For the classical
model, we also derive a fluctuation theorem, highlighting
the role of continuous measurement and feedback in
information thermodynamics.
Fokker-Planck master equation.—A general setup for

continuous measurement and feedback is depicted in Fig. 1.
We consider an open quantum system whose dynamics, in
the absence of measurement and feedback, are described by
a Liouville superoperator L. A detector continuously
measures a system observable Â. The measurement
strength λ determines the magnitude of the measurement
backaction, the limit λ → 0 (λ → ∞) corresponds to a
weak, nonintrusive (strong, projective) measurement pre-
serving (destroying) the quantum coherence of the system.
Weak measurements thus reduce backaction, but increase
measurement uncertainty. To provide a realistic detector
description, we consider a finite bandwidth γ, acting as a
low-pass frequency filter, eliminating high frequency
measurement noise at the cost of introducing a time delay
scaling as 1=γ. Feedback control is incorporated by con-
tinuously feeding back the measurement outcome D into
the system, controlling the system Liouville superoperator
via LðDÞ.

Our main result is the following deterministic Fokker-
Planck master equation (derivation outlined below),

∂tρ̂tðDÞ ¼ LðDÞρ̂tðDÞ þ λD½Â�ρ̂tðDÞ

− γ∂DAðDÞρ̂tðDÞ þ γ2

8λ
∂
2
Dρ̂tðDÞ; ð1Þ

describing the joint system-detector dynamics under con-
tinuous measurement and feedback control. The density
operator ρ̂tðDÞ represents the joint state of system and
detector, where ρ̂t ≡

R
dD ρ̂tðDÞ is the system state for

an unknown measurement outcome D, and PtðDÞ≡
trfρ̂tðDÞg defines the probability distribution of the meas-
urement outcome D. Note that

R
dDPtðDÞ ¼ 1 and

trfρ̂tg ¼ 1; see Supplemental Material (SM) [77]. The first
term on the rhs of Eq. (1) describes the feedback-controlled
evolution of the system. This term allows for feedback
protocols that are nonlinear in D. The second term, where
D½Â�ρ̂ ¼ Â ρ̂ Â− 1

2
fÂ2; ρ̂g (note Â† ¼ Â), describes how

the system is dephased in the eigenbasis of Â at a rate
proportional to λ due to measurement backaction. The last
two terms constitute a Fokker-Planck equation describing
the detector time evolution. These terms define an
Ornstein-Uhlenbeck process [87] with a system dependent
superoperator drift coefficient AðDÞρ̂≡ 1

2
fÂ −D; ρ̂g and

diffusion constant γ=8λ. This describes a noisy relaxation
of the measurement outcome toward a value determined by
the system state. The derivation of Eq. (1) is rather
involved; see details in SM [77]. The main text instead
aims to highlight its implications and applications.
However, we sketch the derivation at the end of the Letter.
Equation (1) is, like most formalisms for continuous

measurement and feedback, typically restricted to numeri-
cal solutions. However, when there exists a wide separation
between the system and detector timescales, Eq. (1) sim-
plifies to a Markovian master equation for the system state
ρ̂t, allowing for analytical treatment. The detector timescale
1=γ appears in the last two terms in Eq. (1), and the system
timescale 1=Γ is determined by LðDÞ þ λD½Â�. The role of
λ, the measurement strength, is subtle; see below. When
γ ≫ Γ, ρ̂t evolves, to first order in 1=γ, according to

∂tρ̂t ¼ ½L0 þ λD½Â� þ γ−1Lcorr�ρ̂t; ð2Þ

with zeroth order Liouville superoperator L0 and
first order correction Lcorr. L0 is obtained by appro-
ximating the system-detector density operator as
ρ̂tðDÞ ¼ ½Paa0 πaa0 ðDÞVaa0 �ρ̂t, with

πaa0 ðDÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4λ=πγ

p
e−ð4λ=γÞ½D−ðξaþξa0 Þ=2�2 ; ð3Þ

and superoperators Vaa0 ρ̂≡ hajρ̂ja0ijaiha0j, where we used
the eigenvalues and eigenvectors of the measured operator
Â ¼ P

a ξajaihaj. In this approximation, the detector is

FIG. 1. Illustration of a generic measurement and feedback
setup, consisting of an open quantum system and a detector
with finite bandwidth γ. The detector continuously measures an
arbitrary system observable. The measurement strength λ
determines measurement backaction. Continuous feedback is
applied using the measurement outcome D to control the
Liouville superoperator LðDÞ of the system. The time traces
visualize trajectories for the system state SðtÞ and the measure-
ment record DðtÞ.
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always in a system dependent stationary distribution
πaa0 ðDÞ. This is justified for γ ≫ Γ, where changes of
the system occur with a rate much smaller than the inverse
detector relaxation time. Inserting this approximation in
Eq. (1) results in L0 ¼

R
dDLðDÞ½Paa0 πaa0 ðDÞVaa0 �,

describing the system dynamics for a detector with zero
delay time. The first order correction γ−1Lcorr accounts for
the lag of the detector due to its finite response time γ−1. As
usual in linear response theory, this correction can be
written in terms of time-integrated correlation functions;
see SM [77]. Note that λ plays a special role in the
separation of timescales since it appears in both the first
and second line of Eq. (1). In general, Eq. (2) is thus only
justified for λ ≪ γ. Here we keep λ=γ arbitrary as there are
scenarios where Eq. (2) also holds for strong measure-
ments; see below.
We emphasize that Eq. (2) describes arbitrary feedback

protocols, both linear and nonlinear in D. As a consistency
check, we recover the Wiseman-Milburn equation [63]
from Eq. (1) by employing the separation of timescales
approximation to first order in 1=γ, using a linear feedback
Liouville superoperator LðDÞρ̂ ¼ Lρ̂ − iD½F̂; ρ̂�, with
feedback Hamiltonian F̂, and taking the infinite bandwidth
limit (see SM [77]). Our formalism thus generalizes the
important earlier work of Ref. [63] to nonlinear feedback
protocols.
In the following, we highlight the usefulness of Eq. (1)

by studying protocols for power production in two toy
models.
Classical toy model.—By classical system, we refer to a

situation with discrete energy levels, but where the density
matrix remains diagonal in the energy basis at all times.

This can be achieved either by suppressing quantum
coherence by environmental noise or by decoupling the
diagonal and off-diagonal elements of ρ̂t (see SM for details
[77]). Under these conditions, ½ρ̂tðDÞ; Â� ¼ 0 and the
backaction term in Eq. (1) has no influence on the
dynamics. To facilitate a comparison between the classical
and quantum models, we use the same notation. We
consider a classical two-level system, with states j0i and
j1i, coupled to a thermal reservoir at temperature T; see
inset of Fig. 2(a). The system and reservoir exchange
energy quanta with energy Δ at rate Γ. The state of the
system is continuously monitored by measuring the observ-
able Â ¼ σ̂z, with Pauli-Z operator σ̂z ¼ j1ih1j − j0ih0j,
such that whenever the measurement outcome D < 0
(D ≥ 0) for an ideal detector (low noise and delay), the
system resides in j0i (j1i). Feedback is incorporated by
flipping the levels according to the solid arrows in Fig. 2(a)
when an excitation is detected, i.e., when D changes sign,
thereby extracting energy from the reservoir. The
Hamiltonian is given by ĤðDÞ ¼ ½1 − θðDÞ�Δj1ih1jþ
θðDÞΔj0ih0j, where θðDÞ is the Heaviside step function.
Note that ½ĤðDÞ; Â� ¼ 0, ensuring that ρ̂tðDÞ remains
diagonal in the energy basis. The feedback protocol is
represented by the Liouville superoperator,

LðDÞ ¼ ½1 − θðDÞ�L− þ θðDÞLþ; ð4Þ

where L−ρ̂ ¼ ΓnBðΔÞD½σ̂†�ρ̂þ Γ½nBðΔÞ þ 1�D½σ̂�ρ̂ is the
protocol applied for D < 0, and Lþρ̂ ¼ Γ½nBðΔÞ þ
1�D½σ̂†�ρ̂þ ΓnBðΔÞD½σ̂�ρ̂ is the protocol applied for
D ≥ 0, with system ladder operator σ̂ ¼ j0ih1j, and

(a) (b) (c)

FIG. 2. Steady state power for classical (a) and quantum (b) toy models, varying the measurement strength λ. Solid lines obtained by
numerically solving Eq. (1), dashed lines obtained analytically using the separation of timescales technique. The separation of
timescales assumption breaks down when system and detector timescales are comparable. (a) The inset illustrates a feedback protocol of
a classical two-level system coupled to a thermal reservoir. When excited (dashed arrow), the levels are flipped (solid arrows), extracting
energy. For strong measurements (λ ≫ γ), the average occupation of the bath [nBðΔÞ] sets an upper limit on extracted power, see dashed
grey line, and is only reached for fast detectors (γ=Γ ≫ 1) [cf. Eq. (6)]. For weak measurements ðλ ≪ γ), feedback is applied randomly
and energy is dissipated into the reservoir. (b) The inset depicts a feedback protocol for a qubit, coherently driven by an external driving
field. The protocol is identical to (a). For strong measurements, the power vanishes because of the quantum Zeno effect. For weak
measurements, no power can be extracted as feedback is applied randomly. (c) Visualization of ρ̂tðDÞ for the quantum toy model, with
stationary matrix elements ρabðDÞ ¼ hajρ̂tðDÞjbi. Here we use g=Δ ¼ 0.01 and γ ¼ Δ ¼ λ. Top panel: diagonal elements of ρ̂tðDÞ.
Bottom panel: real and imaginary part of ρ01ðDÞ.
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Bose-Einstein distribution nBðxÞ ¼ ½expðx=kBTÞ − 1�−1,
with x denoting energy and kB the Boltzmann constant.
Employing the separation of timescales technique, using

γ ≫ Γ with Eqs. (2) and (3), the system evolves, to zeroth
order in 1=γ, according to the feedback Liouville super-
operator,

L0¼½ð1−ηÞL−þηLþ�V00þ½ηL−þð1−ηÞLþ�V11; ð5Þ

where we introduced the feedback error probability η ¼
½1 − erfð2 ffiffiffiffiffiffiffi

λ=γ
p Þ�=2 for a single feedback event, where

erfð·Þ is the error function and 0 ≤ η ≤ 1=2. Feedback is
applied incorrectly when the measurement outcome does
not reflect the true system state. Note that weak (strong)
measurements yield high (low) detector noise and increase
(decrease) the error probability.
To zeroth order in 1=γ, the average power production

reads

P ¼ ΓΔ½ð1 − ηÞnBðΔÞ − η½nBðΔÞ þ 1��; ð6Þ

where P > 0 corresponds to extracting energy from the
bath. For strong measurements (η → 0), feedback is con-
sistently applied correctly and energy is only extracted
from the reservoir. The maximum extraction rate P ¼
ΓΔnBðΔÞ is limited by the coupling Γ and the average
occupation nBðΔÞ of the bath. For weak measurements,
feedback errors together with the asymmetry between
excitation and deexcitation rates lead to a net dissipation
of energy. Interestingly, the maximum dissipation rate P ¼
−ΓΔ=2 is independent of nBðΔÞ. Equation (6) is plotted
with a black, dashed line in Fig. 2, illustrating the behavior
for weak and strong measurements. Additionally, we
computed the power by (i) numerically solving Eq. (1)
(solid colored lines) and (ii) using the separation of time-
scales technique to first order in 1=γ (dashed colored lines)
(see SM for details [77]). As γ decreases, the extracted
power decreases because the detector can no longer resolve
fast changes in the system, missing opportunities to extract
energy. The separation of timescales approximation gradu-
ally breaks down as γ and Γ become comparable.
Following Ref. [88], in the longtime limit, Eq. (5)

implies the detailed fluctuation theorem,

Pð−mÞ
PðmÞ ¼ emðΔ=kBT−ln½ð1−ηÞ=η�Þ; ð7Þ

for the number of extracted energy quanta m, where m > 0
(m < 0) corresponds to extracting (dissipating) energy
from the bath. The term Δ=T is the entropy change in
the bath related to the exchange of a single quantum. The
information term ln½ð1 − ηÞ=η� is given by the log-odds of
not making an error and can be interpreted as the difference
in information content between correctly and incorrectly
applying feedback. Note that most information from the

continuous measurement is discarded—it is only the
information during a change in the system state that
matters. In the error-free limit, η → 0, the information
term diverges, illustrating absolute irreversibility; i.e., all
excitations are extracted. See SM for a derivation of
Eq. (7) [77].
Quantum toy model.—We consider a qubit coherently

driven by an external driving field; see inset of Fig. 2(b).
Measurement and feedback are identical to the classical toy
model, now extracting energy from the driving field. The
feedback protocol is described by LtðDÞρ̂ ¼ −i½ĤtðDÞ; ρ̂�
with Hamiltonian

ĤtðDÞ¼ ½1−θðDÞ�Δj1ih1jþθðDÞΔj0ih0jþgcosðΔtÞσ̂x;
ð8Þ

where Δ is the qubit level spacing, g the strength of the
qubit-driving field coupling, and σ̂x the Pauli-X operator.
Separating system and detector timescales to first order

in 1=γ results in system Liouville superoperator (details in
SM [77]),

½L0 þ λD½σ̂z� þ γ−1Lcorr�ρ̂ ¼ −ig cosðΔtÞ½σ̂x; ρ̂� þ λ̃D½σ̂z�ρ̂

−
2Δg
γ

D0 cosðΔtÞσ̂x; ð9Þ

with effective dephasing rate λ̃ ¼ λþ Δ2 lnð2Þ=2γ, and
coefficient D0 ¼ 2

ffiffiffiffiffiffiffiffiffiffi
λ=πγ

p
2F2ð1=2; 1=2; 3=2; 3=2;−4λ=γÞ,

where 2F2ð·Þ is a generalized hypergeometric function. The
first term on the rhs of Eq. (9) represents the coherent drive,
while the second term describes dephasing due to meas-
urement and feedback. The third term is a source for
quantum coherence, stabilizing the coherence in the long-
time limit. We emphasize that the first order correction is
essential to compute the power as the steady state coher-
ence vanishes to leading order, and hence, no power can be
extracted. Note that the third term, which goes beyond
leading order, can lead to negativities in ρ̂t, which is of no
concern in the separation of timescales regime where the
term is small. We stress that this term is trace preserving as
σ̂x is traceless.
The average power of the system is given by

PðtÞ ¼ trf½∂tĤðDÞ�ρ̂tg, where power is extracted [dissi-
pated] when PðtÞ > 0 [PðtÞ < 0]. Over one driving period
τ ¼ 2π=Δ, the time averaged power reads

P̄ ¼ 2g2Δ
γ

D0

Δ2

Δ2 þ 4λ̃2
: ð10Þ

For strong measurements λ ≫ γ, the power vanishes
because of the quantum Zeno effect. For weak measure-
ments λ ≪ γ, large detector noise leads to completely
random feedback, and the power goes to zero because of
the symmetric driving. This is highlighted in Fig. 2(b),
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where we plot Eq. (10) as dashed lines. The solid lines were
computed numerically by solving the full Eq. (1). The
corresponding steady state matrix elements of ρ̂tðDÞ are
visualized in Fig. 2(c) (details in SM [77]). Similar to
the classical toy model, the separation of timescales
assumption breaks down when system and detector time-
scales are comparable.
Outline derivation main result.—To outline the main

steps in the derivation of Eq. (1), we start by describing the
continuous measurement. For a single instantaneous meas-
urement, the system state ρ̂t transforms as

ρ̂tðzÞ ¼ K̂ðzÞρ̂tK̂†ðzÞ; ð11Þ

where K̂ðzÞ is the measurement operator for obta-
ining outcome z, obeying the completeness relationR
dz K̂†ðzÞK̂ðzÞ ¼ 1, trfρ̂tðzÞg is the probability of obta-

ining z, and
R
dz ρ̂tðzÞ is the system state for an unknown

measurement outcome. Stressing that temporal coarse
graining results in Gaussian noise for any measure-
ment operator [89], we consider Gaussian measurement
operators [89,90],

K̂ðzÞ ¼
�
2λδt
π

�
1=4

e−λδtðz−ÂÞ
2

; ð12Þ

where δt is the time between measurements. A weak
continuous measurement is obtained by repeatedly meas-
uring the system, taking the limit λδt → 0 for a fixed
measurement strength λ. In this limit, the sequence of
outcomes becomes a continuous signal zðtÞ.
The detector bandwidth γ is introduced through a low-

pass frequency filter [1,12,91–95],

DðtÞ ¼
Z

t

−∞
ds γe−γðt−sÞzðsÞ; ð13Þ

such that the measurement outcome DðtÞ is a smoothened
version of the signal zðtÞ. The filter reduces the high
frequency measurement noise and introduces a detector
delay. This provides a realistic detector model, but the filter
is also necessary for nonlinear feedback protocols because
higher orders of zðtÞ are ill defined due to its white noise
spectrum which includes diverging frequencies [1,12,93].
Feedback is incorporated by controlling the system time

evolution in between measurements, i.e., making the
Liouville superoperator LðDÞ dependent on the frequency
filtered measurement outcome D. Combining time evolu-
tion due to measurements and due to the Liouvillian, we
find Eq. (1) in the continuous limit δt → 0. The derivation
can be carried out either in the framework of stochastic
calculus following the methods outlined in Refs. [68,89] or
under the rules of conventional calculus. See details in
SM [77].

Conclusions.—We have derived a Fokker-Planck master
equation for continuous feedback control, describing the
joint system-detector dynamics for detectors with finite
bandwidth. By separating system and detector timescales,
we obtain a Markovian master equation for the system
alone, opening a new avenue for analytical modeling of
nonlinear feedback protocols. The Markovian description
further implies fluctuation theorems, providing insight into
the connection between thermodynamics and information
theory. With two simple toy models, we highlighted the
usefulness of our formalism, showing that it can be applied
to a large variety of systems in both the classical and
quantum regimes. Future endeavors include extensions of
the formalism to include non-Markovian effects and state-
estimation feedback [61,96].
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Ficheux, J. Anders, A. Auffèves, R. Azouit, P. Rouchon, and
B. Huard, Observing a quantum Maxwell demon at work,
Proc. Natl. Acad. Sci. U.S.A. 114, 7561 (2017).

[32] Y. Masuyama, K. Funo, Y. Murashita, A. Noguchi, S. Kono,
Y. Tabuchi, R. Yamazaki, M. Ueda, and Y. Nakamura,
Information-to-work conversion by Maxwell’s demon in a
superconducting circuit quantum electrodynamical system,
Nat. Commun. 9, 1291 (2018).

[33] M. Naghiloo, J. J. Alonso, A. Romito, E. Lutz, and K.W.
Murch, Information Gain and Loss for a Quantum
Maxwell’s Demon, Phys. Rev. Lett. 121, 030604 (2018).

[34] M. Ribezzi-Crivellari and F. Ritort, Large work extraction
and the Landauer limit in a continuous Maxwell demon,
Nat. Phys. 15, 660 (2019).

[35] T. Sagawa, Thermodynamics of information processing in
small systems, Prog. Theor. Phys. 127, 1 (2012).

[36] J. M. R. Parrondo, J. M. Horowitz, and T. Sagawa, Thermo-
dynamics of information, Nat. Phys. 11, 131 (2015).

[37] J. Goold, M. Huber, A. Riera, L. del Rio, and P. Skrzypczyk,
The role of quantum information in thermodynamics—a
topical review, J. Phys. A 49, 143001 (2016).

[38] T. Sagawa and M. Ueda, Second Law of Thermodynamics
with Discrete Quantum Feedback Control, Phys. Rev. Lett.
100, 080403 (2008).

[39] T. Sagawa and M. Ueda, Generalized Jarzynski Equality
Under Nonequilibrium Feedback Control, Phys. Rev. Lett.
104, 090602 (2010).

[40] M. Ponmurugan, Generalized detailed fluctuation theorem
under nonequilibrium feedback control, Phys. Rev. E 82,
031129 (2010).

PHYSICAL REVIEW LETTERS 129, 050401 (2022)

050401-6

https://doi.org/10.1103/PhysRevLett.89.133602
https://doi.org/10.1103/PhysRevLett.90.043001
https://doi.org/10.1103/PhysRevLett.90.043001
https://doi.org/10.1103/PhysRevLett.96.043003
https://doi.org/10.1103/PhysRevLett.96.043003
https://doi.org/10.1038/nature06257
https://doi.org/10.1103/PhysRevLett.104.080503
https://doi.org/10.1103/PhysRevLett.104.080503
https://doi.org/10.1103/PhysRevLett.104.093601
https://doi.org/10.1038/nphoton.2010.268
https://doi.org/10.1038/nphoton.2010.268
https://doi.org/10.1103/PhysRevLett.108.243602
https://doi.org/10.1103/PhysRevLett.108.243602
https://doi.org/10.1103/PhysRevLett.109.130404
https://doi.org/10.1103/PhysRevLett.109.130404
https://doi.org/10.1103/PhysRevLett.109.240502
https://doi.org/10.1103/PhysRevLett.109.240502
https://doi.org/10.1126/science.1225258
https://doi.org/10.1126/science.1225258
https://doi.org/10.1038/s41586-019-1287-z
https://doi.org/10.1038/s41586-019-1287-z
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1103/RevModPhys.81.1
https://doi.org/10.1103/RevModPhys.81.1
https://doi.org/10.1038/nature05452
https://doi.org/10.1038/nature05452
https://doi.org/10.1038/nphys1821
https://doi.org/10.1073/pnas.1406966111
https://doi.org/10.1103/PhysRevLett.113.030601
https://doi.org/10.1038/ncomms15301
https://doi.org/10.1038/ncomms15301
https://doi.org/10.1038/s41586-018-0458-7
https://doi.org/10.1038/s41586-018-0458-7
https://doi.org/10.1103/PhysRevLett.128.040602
https://doi.org/10.1103/PhysRevLett.128.040602
https://doi.org/10.1103/PhysRevLett.116.050401
https://doi.org/10.1073/pnas.1704827114
https://doi.org/10.1038/s41467-018-03686-y
https://doi.org/10.1103/PhysRevLett.121.030604
https://doi.org/10.1038/s41567-019-0481-0
https://doi.org/10.1143/PTP.127.1
https://doi.org/10.1038/nphys3230
https://doi.org/10.1088/1751-8113/49/14/143001
https://doi.org/10.1103/PhysRevLett.100.080403
https://doi.org/10.1103/PhysRevLett.100.080403
https://doi.org/10.1103/PhysRevLett.104.090602
https://doi.org/10.1103/PhysRevLett.104.090602
https://doi.org/10.1103/PhysRevE.82.031129
https://doi.org/10.1103/PhysRevE.82.031129


[41] J. M. Horowitz and S. Vaikuntanathan, Nonequilibrium
detailed fluctuation theorem for repeated discrete feedback,
Phys. Rev. E 82, 061120 (2010).

[42] Y. Morikuni and H. Tasaki, Quantum Jarzynski-Sagawa-
Ueda relations, J. Stat. Phys. 143, 1 (2011).

[43] T. Sagawa and M. Ueda, Fluctuation Theorem with In-
formation Exchange: Role of Correlations in Stochastic
Thermodynamics, Phys. Rev. Lett. 109, 180602 (2012).

[44] T. Sagawa and M. Ueda, Nonequilibrium thermodynamics
of feedback control, Phys. Rev. E 85, 021104 (2012).

[45] D. Abreu and U. Seifert, Thermodynamics of Genuine
Nonequilibrium States Under Feedback Control, Phys. Rev.
Lett. 108, 030601 (2012).

[46] K. Funo, Y. Watanabe, and M. Ueda, Integral quantum
fluctuation theorems under measurement and feedback
control, Phys. Rev. E 88, 052121 (2013).

[47] C. W. Wächtler, P. Strasberg, and T. Brandes, Stochastic
thermodynamics based on incomplete information:
Generalized Jarzynski equality with measurement errors
with or without feedback, New J. Phys. 18, 113042 (2016).

[48] P. P. Potts and P. Samuelsson, Detailed Fluctuation Relation
for Arbitrary Measurement and Feedback Schemes, Phys.
Rev. Lett. 121, 210603 (2018).

[49] J. P. Pekola, Towards quantum thermodynamics in elec-
tronic circuits, Nat. Phys. 11, 118 (2015).

[50] W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T.
Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Electron
transport through double quantum dots, Rev. Mod. Phys. 75,
1 (2002).

[51] M. Kjaergaard, M. E. Schwartz, J. Braumller, P. Krantz,
J. I.-J. Wang, S. Gustavsson, and W. D. Oliver, Super-
conducting qubits: Current state of play, Annu. Rev. Con-
dens. Matter Phys. 11, 369 (2020).

[52] C. Fasth, A. Fuhrer, M. T. Björk, and L. Samuelson, Tunable
double quantum dots in InAs nanowires defined by local
gate electrodes, Nano Lett. 5, 1487 (2005).

[53] K.W. Murch, R. Vijay, and I. Siddiqi, Weak measurement
and feedback in superconducting quantum circuits, in
Superconducting Devices in Quantum Optics, edited by
R. H. Hadfield and G. Johansson (Springer International
Publishing, Cham, 2016), pp. 163–185.

[54] D. Barker, S. Lehmann, L. Namazi, M. Nilsson, C.
Thelander, K. A. Dick, and V. F. Maisi, Individually
addressable double quantum dots formed with nanowire
polytypes and identified by epitaxial markers, Appl. Phys.
Lett. 114 (2019).

[55] B. Küng, C. Rössler, M. Beck, M. Marthaler, D. S. Golubev,
Y. Utsumi, T. Ihn, and K. Ensslin, Irreversibility on the
Level of Single-Electron Tunneling, Phys. Rev. X 2, 011001
(2012).

[56] A. Hofmann, V. F. Maisi, J. Basset, C. Reichl, W.
Wegscheider, T. Ihn, K. Ensslin, and C. Jarzynski, Heat
dissipation and fluctuations in a driven quantum dot, Phys.
Status Solidi B 254, 1600546 (2017).
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