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We investigate the emergence of complex dynamics in networks with heavy-tailed connectivity by
developing a non-Hermitian random matrix theory. We uncover the existence of an extended critical regime
of spatially multifractal fluctuations between the quiescent and active phases. This multifractal critical
phase combines features of localization and delocalization and differs from the edge of chaos in classical
networks by the appearance of universal hallmarks of Anderson criticality over an extended region in phase
space. We show that the rich nonlinear response properties of the extended critical regime can account for a
variety of neural dynamics such as the diversity of timescales, providing a computational advantage for
persistent classification in a reservoir setting.
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Introduction.—In a diverse range of physical, biological,
financial, and ecological systems, complex dynamics
fluctuating across multiple scales emerge from a large
number of interacting, nonlinear units with heterogeneous
properties. Understanding the organizing principles and
behavior of such complex dynamics is a longstanding topic
of interest across these diverse fields [1]. In neuroscience
and machine learning, neural networks with many interact-
ing neurons likewise exhibit complex dynamics with large
fluctuations that are critical for their information processing
abilities on real-world inputs [2]. However, the network
mechanisms and fundamental computational capabilities of
complex neural dynamics remain elusive.
The classical formulation of complex dynamics in

systems with many interacting elements is based on
neural networks with homogeneous connectivity [3].
Mathematical approaches such as mean-field theory and
random matrix theory have robustly predicted a phase of
chaotic activity with global, homogeneous (i.e., delocal-
ized) fluctuations existing adjacent to an ordered, silent
regime, enabling the analysis of a wide range of systems
with a characteristic spatial scale [4]. The edge of the
ordered and chaotic phases gives rise to critical phenomena
that is thought to be necessary for these systems to perform
useful computations [5]. However, growing evidence has
shown that coupling heterogeneity is widespread in com-
plex systems such as biological [6] and artificial neural
networks [7,8], underscoring the need to understand the
fundamental dynamical and computational mechanisms of
such heterogeneity.
Here, we study the dynamics of random neural networks

with heterogeneous, heavy-tailed connectivity. After
describing the fixed points of the system using a Lévy
mean-field approach, we develop a novel non-Hermitian
random matrix theory for column-structured heavy-tailed
matrices to analyze the statistical fluctuations of random

neural networks around the fixed point. This theory reveals
a new regime with correlated multifractal modes that are
neither localized nor delocalized, but have aspects of both
(see Fig. 1). Multifractality is characterized by the appear-
ance of differing, nontrivial structures appearing simulta-
neously over a wide variety of scales [9], and is a hallmark
of Anderson transitions (criticality) [10]. Anderson tran-
sitions were first described in the context of disordered
electronic systems with localized and metallic (i.e., delo-
calized) phases [11], and have since been analyzed in a
broad sense in a wide range of systems, including treelike
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FIG. 1. Schematic of homogeneous and heavy-tailed networks
(left) and their temporal activity fluctuations over neural sites
(right). (a) Homogeneous neural network (blue left). Activity
fluctuations are delocalized and spread evenly over the spatial
extent of the system (right). (b) Heavy-tailed neural network (red
left) with heterogeneous weights (line thickness). Large activity
fluctuations are multifractal with a mixture of localization and
delocalization over system sites (right) visible over multiple
scales (right inset).
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Bethe lattices [12] and those exhibiting conventional
second-order phase transitions [10].
We illustrate that the heavy-tailed heterogeneity in

connectivity enables Anderson criticality to emerge in a
broad parameter regime. The correlated multifractal modes
characteristic of this extended critical regime are able to
explain a range of realistic neural dynamics, including
correlated fluctuations with low-dimensional features [13],
long-range correlations [14], and a diversity of timescales
[15]. Importantly, these correlated multifractal modes
provide a profound computational advantage in the setting
of real-time reservoir computing by allowing for a persis-
tent form of dimensionality expansion, which is not
possible in classical homogeneous systems.
Network model and fixed points.—We begin by extend-

ing the seminal random neural network model with
interacting nonlinear units analysed by Sompolinsky et al.
and others [3,4], which has the dynamics

h0iðtÞ ¼ −hiðtÞ þ g
XN
j¼1

Jijϕ½hjðtÞ�; ð1Þ

where hiðtÞ is the input of the ith neuron at time t, Jij is the
strength of the connection from neuron j to neuron i, and ϕ
is a scalar nonlinearity that determines the neural firing rate
given the input. The theoretical results in this Letter apply
for all differentiable, sublinear ϕ, and the figures use ϕ ¼
tanh for comparability with previous models [3]. The
coefficient g is the gain parameter of the synaptic input.
Our aim is to investigate networks with heavy-tailed
heterogeneity that do not fall within the purview of the
Gaussian large-size limit. Finite-size heterogeneous net-
works can be investigated to some degree using perturba-
tive finite-order corrections to the homogeneous Gaussian
limit [16]. We instead take an approach that is exact in the
large network limit by regarding each Jij as an independent
random variable whose second moment is not finite, so that
its probability density has a power-law asymptotic tail,

pJijðxÞ ∼jxj→∞ Cα

2Njxj1þα ; ð2Þ

where Cα ≔ Γð1þ αÞ sinðπα=2Þ=π is a normalization fac-
tor and 1 < α < 2. Such heavy-tailed connectivity has been
observed in the Drosophila central brain [6], in successfully
trained artificial neural networks [8], and in spin-glass
systems with strong disorder [17]; theoretically elucidating
the dynamical impact of such heterogeneity has drawn
increasing attention [18]. As we discover in our Jacobian
analysis below, the zero fixed point is unstable so that
network activity is nonzero and has a macroscopic number
of nonzero fixed points at any gain g for α < 2 (see
Supplemental Material [19] for Lévy mean-field theory),
in contrast to homogeneous networks (α ¼ 2) for which the
network exhibits a single stable fixed point when g < 1.

Network stability and heavy-tailed random matrix
theory.—To determine the local stability of the network
around the fixed points, we analyze the Jacobian matrix
−I þ gJdiagj½ϕ0ðhjÞ� obtained from Eq. (1) where diagjχj
denotes the diagonal matrix with entries χj. Shifting this
Jacobian matrix yields a stability matrix obtained by
scaling the columns of gJ by ϕ0ðhjÞ, which has the form
of a column-structured non-Hermitian random matrix [24].
Since the heavy-tailed matrix J (and thus Jdiagjχj) has a
locally treelike structure [21], we develop a new cavity
approach for column-structured non-Hermitian heavy-
tailed random matrices to obtain the spectral density and
eigenvector localization properties of the Jacobian [19]. In
recent years, cavity approaches have been used in asym-
metrically disordered contexts involving non-Hermitian
random ensembles by mapping the problem back to a
symmetric, Hermitian system of twice the dimensionality
[22]. Our cavity approach to the column-structured matrix
Jdiagjχj for any χj with hjχjjαij < ∞ yields the spectral
density

ρðzÞ ¼ y2� − 2jzj2y�∂jzj2y�
π

� jχij2SS0
ðjzj2 þ jχij2y2�SS0Þ2

�
i

ð3Þ

(see Supplemental Material [19] for mathematical deriva-
tions) as a function of eigenvalue modulus jzj. The random
variables S; S0 ∼ Lðα=2; 1; 0; Cα=4Cα=2Þ are independent,
skewed α=2-stable samples, h::ii denotes averaging over i,
S, and S0, and the fixed-point variable y� is found by
solving the equation

1 ¼
�� jχij2S

jzj2 þ y2�jχij2SS0
�

α=2
�

i
: ð4Þ

Our randommatrix theory thus unifies both classical results
in block-structured non-Hermitian random matrix theory
[4,23] for which α ¼ 2 and the random variables S, S0
reduce to the constant 1, and unstructured heavy-tailed non-
Hermitian random matrices [21] for which χ ¼ 1.
Figure 2(a) shows the eigenvalue density ρðzÞ of the

Jacobian and its numerical validation as a function of
eigenvalue modulus jzj. A key characteristic of heavy-tailed
neural networks is the infinite spectral radius r0, given by
the point at which y� ¼ 0, so that the zero fixed point only
occurs for zero gain. However, since the eigenvalue density
of the heavy-tailed Jacobian is exponentially suppressed at
large radius [19,21], a characteristic spectral radius rp can
be defined by the eigenvalue modulus jzj at which the
parameter y� drops to a fraction p of its value at z ¼ 0.
Meanwhile, the spectral radius r0 of the Jacobian for
classical networks (α ¼ 2) is finite and is obtained by a
spectral analysis of finite-variance block-structured random
matrices [4,23]. In this sense, y� behaves as an order
parameter indicating the transition between microscopic
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and macroscopic numbers of eigenstates relative to system
size N at a given eigenvalue modulus jzj. Thus, heavy-
tailed networks exhibit a quasiordered regime with a fixed
point near zero whose magnitude is suppressed due to the
microscopic number of eigenstates above the Jacobian
stability line Rez ¼ 1. A continuous transition parame-
trized by p ≪ 1 is then defined by the value of the gain
parameter g at which the characteristic spectral radius
rp ¼ 1, distinguishing a quiescent phase from a chaotic
regime (Fig. 2(b), lower dashed line). This transition is
consistent with the point at which neural activity predicted
by mean-field theory [19] deviates significantly from zero
(Fig. 2(b), red line).
An extended critical phase with correlated multifractal

modes.—The localization of dominant Jacobian eigenm-
odes v determines the spatial profile of network fluctua-
tions and is described by the inverse participation ratio
IPRqðvÞ ¼

P
i jvij2q, where q > 0 is a continuous index.

The scaling of this quantity for large system size N is
asymptotically described by IPRqðvÞ ∼ Nð1−qÞDq, where
Dq ¼ 0 (Dq ¼ 1) corresponds to localized (delocalized)
states. Multifractal states are characterized by Dq being a
nontrivial function of q, which is a hallmark of Anderson
transitions [10]; the quantity Dq is consequently known as
the multifractal dimension. Standard results in random
matrix theory have established that the eigenvectors of
random matrices with independent subexponential entries
are delocalized [25], which includes the Jacobian matrices
of classical homogeneous random neural networks (α ¼ 2).

The chaotic fluctuations of classical random neural net-
works are thus delocalized, with the IPR (Fig. 2(c), blue)
staying close to the value N1−q attained for a constant,
maximally delocalized vector ð1= ffiffiffiffi

N
p

;…; 1=
ffiffiffiffi
N

p Þ, and the
Dq estimate via Dq ∼ ðlogN IPRqÞ=ð1 − qÞ staying close to
that of a random N-dimensional spherical vector, which is
delocalized with overwhelming probability [26] (Fig. 2(d),
blue and black); these two Dq estimates remain slightly
curved due to finite-size effects.
Using our cavity approach, we find that all of the right

eigenvectors of the heavy-tailed network Jacobian around
the stationary state are multifractal for sigmoidal ϕ, a
hallmark of Anderson transitions (see Supplemental
Material [19] for derivation). The activity of heavy-tailed
neural networks is thus dominated by multifractal chaotic
fluctuations in contrast to the spatially delocalized chaos
appearing in classical models. This theoretical prediction
on heavy-tailed network dynamics is confirmed by simu-
lations of temporal fluctuations of homogeneous and
heavy-tailed neural activity (Figs. 2(c) and 2(d), red) which
are both chaotic at g ¼ 1.75. In Fig. 2(c) the IPR varies
widely between the asymptotic large-N delocalized
(− log10 N ≈ −3) and localized (0) values, while the
classical network’s activity fluctuations remain delocalized
(blue). This result is remarkable from a physical standpoint
as the activity itself is delocalized due to the bounded
activation function ϕ ¼ tanh, and does not visibly differ
significantly from classical networks with Gaussian
dynamics (see Supplemental Material [19]).

(a)

(e)

(b) (c)

(d)

FIG. 2. Extended Anderson critical regime in heavy-tailed random neural networks (N ¼ 1000 in simulations). (a) Jacobian spectra
Jdiagj½tanh0ðhjÞ� in the stationary state (lines) with characteristic spectral radius r0.01 (dashed circle) and their numerical validation
(dots). (b) Phase diagram over heavy-tailed index α and gain g. Extended Anderson critical regime predicted by Eq. (5) (lines labeled
by n) corresponds with high relaxation time variance (colored). Green dots at g ¼ 1.75. (c) Log-IPR of the heavy-tailed network
activity fluctuation vector (red). (d) Mean multifractal dimension Dq shaded to one standard deviation over time. Dq estimate for a
random delocalized vector on the N-sphere (dashed) for comparison. (e) Distribution of the half-width at quarter-maximum of the
local-field autocorrelation for g ¼ 0.75, 1.5, 2.25, 3 (red, blue, yellow, purple). Log-log plot (inset) with comparison power-law line
of exponent −2.0.
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To investigate the behavior of the system’s multifractal
modes over long timescales, we quantify the extent to
which Jacobian eigenvalues λi corresponding to a given
eigenvector change their modulus relative to unity when
new samples are chosen from the stationary distribution of
neural activity. We thus consider the Jacobian average

hðjλij − 1Þnii ¼
Z
C
ðjzj − 1ÞnρðzÞdz ð5Þ

penalizing small and rewarding large eigenvalues to a
degree determined by n which we call the annealing
strength, and we find a region for the gain g adjacent to
and above the ordered transition line, which is character-
ized by a greater proportion of eigenvalues away from zero
compared to the ordered transition. This region for n ¼
1; 3;…; 9 is found between the lower ordered transition line
and the upper dashed line bearing the label n in Fig. 2(b).
Quantifying the Jacobian spectral density via the Jacobian
average allows us to distinguish between an active chaotic
region in which unstable fluctuations tend to be quickly
suppressed in favor of new fluctuations, and a region of
temporally correlated chaotic fluctuations. The continuous
transition between these active and correlated chaotic
regimes is parametrized by the annealing strength n in
Eq. (5). The theoretically predicted correlated region closes
into the well-known critical point at the ordered-chaotic
phase transition (g ¼ 1) for classical rate-based networks
(α ¼ 2), thus supporting the notion that the extended region
of correlated multifractal modes is a critical regime. This
extended critical phase is characterized by a significantly
nonzero stationary state and a macroscopic proportion of
unstable eigenstates relative to system dimensionality N,
which is fundamentally different from the classical edge of
chaos occurring around the zero fixed point when a
microscopic proportion of eigenstates crosses the stability
line. Consequently, this extended critical phase remains
chaotic rather than existing solely at the edge of a chaotic
phase as in classical networks [4].
In summary, the extended critical phase of temporally

correlated, spatially multifractal fluctuations provides a
demonstration of how various aspects of realistic neural
dynamics may be exhibited simultaneously, such as long-
range correlations [14] and low spatial dimensionality
relative to system size [13]. This latter property arises
from the localization of spatially multifractal fluctuations
onto a small number of sites relative to system size (Fig. 1).
Such behavior, along with the non-self-averaging proper-
ties characteristic of Anderson criticality [27] that we
derived for local-field autocorrelation, suggests that the
timescales across neurons in the heavy-tailed neural net-
work are diverse. To validate this theoretical prediction on
the extended critical region, we compute the relaxation
timescales of neural autocorrelations over many realiza-
tions of random networks across heavy-tailed index α and

network gain g. The extended Anderson critical regime
emerging between the lower and upper dashed lines in
Fig. 2(b) predicted by Eq. (5) (labeled by n) corresponds
with high relaxation time variance (colored). We find that
the extended critical phase is characterized by diverse
timescales [Fig. 2(e)]: the relaxation timescale distribution
is power law with index −2.0, consistent with that seen in
cortical memory traces [15]. This behavior only exists in
the critical regime (see Supplemental Material [19] for data
analysis and quantitative fitting).
Persistent reservoir computing.—To explore the com-

putational implications of the extended critical regime of
correlated multifractal chaos, we consider a reservoir com-
puting task described in [28] exploiting the chaotic dimen-
sionality expansion of neural representations ΔH12 ¼
HðsÞ

12 −HðnÞ
12 between signal (HðsÞ

12 ) and noise (HðnÞ
12 ) dis-

tances (see Supplemental Material [19] for setup details).
Heavy-tailed networks make use of the temporal correla-
tions of multifractal Jacobian eigenvectors above the
stability line to enact a persistent form of real-time
computation in a reservoir computing context. Because
the extended critical regime is chaotic in heavy-tailed
networks with a significantly nonzero fixed point, this
regime is able to perform dimensionality expansion on its
input in contrast to the classical edge of chaos which resides
around the zero fixed point. At the same time, the correlated
multifractal Jacobian eigenvectors work to hold off the
onset of mixing (Fig. 3, yellow) to perform persistent
chaotic dimensionality expansion on its input, allowing
the computed result to remain in the system and thus
the classification performance to stay above the baseline

FIG. 3. Persistent dimensionality expansion in heavy-tailed
random neural networks. Top, middle panels: Evolution of
average signal and noise distances in a rate-based model with
N ¼ 250 and g ¼ 3, as measured by the Hamming distance

H12 ≔ kϕðhð1Þi Þ − ϕðhð2Þi Þk2i between states ϕðhð1Þi Þ and ϕðhð2Þi Þ.
Bottom panel: 5th–95th percentile classification accuracy of
heavy-tailed (red) and homogeneous (blue) rate-based neural
networks.
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(0.01–0.03) for a longer period of time (Fig. 3, bottom). For
example, in the parameters used in Fig. 3, the Gaussian
network reaches chance level after around 70 network time
constants while the heavy-tailed network remains signifi-
cantly above chance level even after 3000 time constants
(see Supplemental Material [19]). The extended critical
regime of correlated multifractal chaos is thus able to
produce efficient neural representations balancing the
dimensional compression of stimuli (Fig. 3 top, red and
blue), which is useful for generalization [29], and the
separation of stimuli, in order to enact a form of persistent
real-time computation.
Discussion.—Our theory rigorously demonstrates that

heterogeneous, heavy-tailed connectivity can endow neural
circuits with Anderson criticality over an extended param-
eter region, thus eliminating the fine-tuning needed in
homogeneously connected neural networks. The Anderson
criticality is characterized by correlated, low-dimensional
fluctuations [13,14] and a diverse reservoir of timescales
[15] as observed in biological neural systems; a reservoir of
timescales can be produced by networks with spatially
dependent coupling [30], plasticity mechanisms [31], or
approximations to heterogeneous coupling using block-
structured connectivity [4] and networks of neural clusters
[32], but the ability for such networks to perform complex
computations remains unexplored. Moreover, the extended
Anderson criticality provides a unique mechanism for
combining robust real-time computation with long-term
memory of the computed output. Both homogeneous and
heavy-tailed networks use chaos to enhance the separation
of inputs for linear classification, but after a transient period
of high separability, mixing dominates and erases the
computed output from the homogeneous system. The
recent observations on the ubiquity of heavy-tailed cou-
pling in pretrained deep neural networks [8] suggest that
our theory would be powerful for revealing the shared
dynamical principles for persistent computation in both
biological and artificial neural networks.
By making a novel link between Anderson criticality and

the highly fluctuating complex dynamics of neural net-
works, our results suggest that complex systems operating
over multiple scales should display a degree of multi-
fractality at some level of fluctuations of system activity,
even when the activity itself is bounded due to physical
constraints. Multifractal phenomena have indeed been seen
in a wide variety of natural systems such as turbulence [9].
In statistical and condensed matter physics, the Anderson
transition appears with multifractality around the boundary
of two phases characterized by localized and delocalized
eigenvectors [10,33]. Our heavy-tailed neural network may
thus be viewed as an inversion of these canonical models: a
structurally extended Anderson regime 0 < α < 2 is
bounded by delocalized Jacobian modes appearing in
classical homogeneous networks with α ¼ 2, and localized
eigenstates appearing in the limit α → 0 corresponding to

sparse matrices and directed random graphs with a small
average degree [34]. Hence, our random matrix theory
could be applied to understand how complex dynamics
emerge in physical systems.

This work was supported by the Australian Research
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