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Kramers Rate Theory of Pacemaker Dynamics in Noisy Excitable Media
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Rhythmic activities, which are usually driven by pacemakers, are common in biological systems. In
noisy excitable media, pacemakers are self-organized firing clusters, but the underlying dynamics remains
to be elucidated. Here we develop a Kramers rate theory of coupled cells to describe the firing properties of
pacemakers and their dependence on coupling strength and system size and dimension. The theory captures
accurately the simulation results of tissue models with stochastic Hodgkin-Huxley equations except when
transitions from pacemakers to spiral waves occur under weak coupling.
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Rhythmic activities are common in biological organisms
[1-7], including heart rhythms, breathing, brain activities,
circadian rhythm, cell or muscle contraction, and signaling
in slime mold, etc. In most cases [8—11], the rhythmic
signal originates from a site, called a pacemaker, and then
conducts throughout the whole system to execute biologi-
cal functions. In general, a pacemaker is assumed as a
group of cells that exhibit limit cycle oscillations. However,
instead of limit cycle oscillators, pacemakers may form via
tissue-scale dynamical instability [12] or self-organized
random firing clusters in noisy excitable media [10,11].
Under normal healthy conditions, some of the rhythms are
highly periodic, such as the circadian rhythm, but some
exhibit large variabilities, such as heart rhythms, brain
activities, or calcium oscillations [4,13—17]. Changes of the
rhythm properties may imply diseases, such as increased
risk of sudden cardiac death [13] or seizures [2,3,16].
Therefore, understanding the dynamics of pacemakers is of
great importance for understanding normal biological
rhythms and disease development.

In excitable cells, noise can cause a quiescent cell to
fire stochastically [18-21]. When these cells are coupled
to form a tissue, pacemakers are self-organized, occurring
randomly in both space and time [10,11,21-25].
Although the firing dynamics in noisy excitable media
have been widely investigated in computer simulations,
a rigorous theory has not been established. In this study,
we develop a Kramers rate theory that accounts for the
firing dynamics in tissue (coupled cells) and their
dependence on coupling strength, tissue size, and dimen-
sion. The theory captures accurately the simulation
results of tissue models with stochastic Hodgkin-
Huxley (HH) equations.

Simulations are carried out in single cell, one-dimensional
(1D) cable and two-dimensional (2D) tissue with the
following partial differential equation for voltage (V):
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where I, is the total current density, C,, = 1 uF/cm? is the
membrane capacitance, and D is the diffusive coupling
constant. [;,, is from the HH model [26] with noise
incorporated into the gating variables using the formulism
by Fox [27]. We use ¢ to describe the noise strength. Model
details are in Supplemental Material [28].

For the original HH model, it remains quiescent unless a
suprathreshold stimulus is given. In the presence of noise,
stochastic firings occur [Fig. 1(a), and see also a recording
in a shorter time window in Fig. S1(a) [28] ], and the firing
intervals (T) exhibit an exponential distribution except for
short intervals. The averaged firing interval (T) and
standard deviation (o) increase exponentially with the
inverse of noise strength (1/¢), and ¢ = T unless when
the noise is strong (1/¢ is small). Recordings from 1D cable
[Fig. 1(b)] and 2D tissue [Fig. 1(c)] exhibit the same
features, except that 7 becomes longer in one and two
dimensions. Figure 1(d) is a space-time plot of V from a 1D
cable, and Fig. 1(e) plots V snapshots from a 2D tissue,
showing randomly occurring pacemakers. For all cases, if
we plot o versus T, it obeys 6 = (T — T i) (see Fig. S1(b)
[28]), with T;, accounting for refractoriness. This type of
relationship was observed for calcium spikes in real cells
and simulations [4,17,29].

The dependences of T on coupling strength (D), system
size (N), and dimension are shown in Fig. 2. Figures 2(a)
and 2(b) plot T versus D for different N for 1D cable
[Fig. 2(a)] and 2D tissue [Fig. 2(b)]. T increases and then
saturates as D increases except for very small D [see
Fig. 4(a)]. For small D, T decreases with N [left panel in
Fig. 2(c)], exhibiting an inverse relationship. As D becomes
larger [middle and right panels in Fig. 2(c)], T first
increases and then decreases with N. Furthermore, for
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FIG. 1. Noise-induced firing properties and pacemakers in
the HH model. (a) A single cell. (b) A 10-cell 1D cable. (c) A
3 x 3-cell 2D tissue. Left panels: V versus ¢ recorded from a cell.
The noise strength is ¢ = 0.002. Middle panels: log P(T) versus
T for two noise strengths as marked. Right panels: log T' (black)
and log o (red) versus 1/¢. (d) Time-space plot of voltage from a
100-cell 1D cable. (e) 3 voltage snapshots showing target patterns
from a 100 x 100-cell 2D tissue. The diffusion constant is
D =2 x 10™* cm?/ms for (b) to (d) and D = 9 x 10~> cm?/ms
for (e).

very large D, the increment of log7 (AlogT) as N
increases to N + 1 is a constant in 1D cable [Fig. 2(a)],
independent of N. In 2D tissue [Fig. 2(b)], T increases
more steeply and saturates earlier as D increases, and
AlogT « N roughly for very large D.
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FIG. 2. Dependence of T on D and N in the HH model. (a) T
versus D from 1D cables of different sizes. (b) T versus D from
2D tissue of different sizes. (¢c) T versus N for 1D cables for
D = 0.00005 (left), D = 0.001 (middle), and D = 0.002 (right)
cm?/ms. The red curve in the left panel is 7 = 22 + 20/N, in
which the 22 ms base is due to the recovery of the HH model (see
Fig. S1 [28]). € = 0.0035 for (a) to (c).

The results in Fig. 1 imply that the firing dynamics in
tissue may still follow the Kramers rate theory. Since the
firing in the HH model is a threshold phenomenon, to
facilitate theoretical analysis, we use the simplest prototype
model for Kramers escape process and couple them
together to investigate the pacemaker dynamics. The
simplest model describing the Kramers escape process is

dx

T = x(x—a) + VEE(1) )

where (1) is a Gaussian white noise satisfying &(r) = 0

and £(1)&(f') = 8(t— ). x =0 is the potential well and
x =a 1is the potential barrier. The transition rate (y)
is [30,31]
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where U is the potential, i.e., U(x) = —1x* + (a/2)x? and
Uyis U atx =0and U, is U at x = a. The distribution of
the first-passage time or firing interval (7T') is

P(T) =ye . (4)

The average firing interval 7 and standard deviation ¢ are

1 27[ 3/66‘
]/ a

(5)

The simulation results of the single cell [Fig. 1(a)] agree
well with the general Kramers theory. Now we consider a
1D cable of N cells with nearest-neighbor coupling, i.e.,

dx,
dt

:xn(xn_a)+D(xn71 +xn+1_2xn)+\/2—8§n(t)’ (6)

where n € [1, N]. In a recent study, Falcke and Friedhoff
[32] derived analytically the first-passage time and its
dependence on system size in a linear Markovian chain
of states using the master equation. Here we derive the first-
passage time or transition rate for 1D [Eq. (6)] and 2D
[Eq. (S20) [28]] prototype models following the Kramers
theory.

The corresponding Fokker-Planck equation of Eq. (6) is

N 2
Z { f(x,)P + ezxp (7)

) =Xp (xn _a)+
solution of

where P=P(x{,X2,...,X,,....Xy,t) and f(x,
D(x,_1+x,.1—2x,). The steady-state
Eq. (7) can be expressed as P(xj,Xa, ..., Xp, ..., Xy) &
e Ul xy)/e with U explicitly expressed as,
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FIG. 3. A Kramers theory based on the prototype model.
(a) Color maps of U for a two-cell system for D = 0.2 (left)
and D =2 (right). (b) Uy and U; versus D for a 4-cell cable.
a=1. (c) T versus D from 1D cables with different sizes.
Symbols are simulation results of Eq. (6) and lines are theoretical
results. (d) 7 versus D from simulations (symbols) and theory
(lines) of 2D tissue with different sizes. The theoretical results are
calculated using 4 saddles of the lowest U; before the bifurcation.
(e) T versus N for D = 0.11 (left), 2.2 (middle), and 4.4 (right).
The red line in the left panel is T = 2.2 + 45/N. a = 0.255 and
e = 0.0063 for (c) to (e), which are the same as the ones used for
the theory in Fig. S4 [28]. The results in (c) to (e) match
quantitatively with those in Fig. 2.

N
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Applying 0U/dx, =0, one obtains a set of algebra
equations for fixed-point solutions, which are identical
to those by setting dx, /dt = 0 in Eq. (6) without the noise
term. Figure 3(a) plots the U landscapes for a 2-cell
system for a small D (left) and a large D (right). When D
is small, there are 4 solutions: a stable node, an unstable
node, and two saddles. As D increases, the two saddles
and the unstable node collapse into a single saddle
(Fig. S2 [28] plots more panels of landscapes of U to
show this process). Figure 3(b) shows U at the fixed-point
solutions (labeled as U, and U;) versus D for a 4-cell
system [Fig. S2(b) [28] shows U; and associated number
of fixed-point solutions for 3 system sizes]. In general, the
number of solutions is between 2 and 2V. There are one
stable node (x; = x, = ... =xy = 0) and one unstable
node (x; = x, = ... = xy = a), and the rest are saddles.
As D increases, the system undergoes multiple bifurca-
tions in which a pair of saddles collapses with each other
or into the unstable node (see Fig. S3 [28] for an example

of this process in a 4-cell system). After the last bifurca-
tion, the system has only one stable node and one saddle.

The system can escape the stable node via any of the
saddles [e.g., Fig. 3(a)]. We assume that the escape paths
are independent, then the probability that the system stays
inside the potential well is described by

where M is the total number of saddles, y = >, y; is the
total transition rate. y; is the transition rate across the ith
saddle, which is calculated as [30,31]

where 1) are the eigenvalues of the stable node and
Al are the eigenvalues of the ith saddle. In general, one
needs to obtain the fixed-point solutions and their
eigenvalues numerically to calculate y;. However, one
can solve the problem analytically for a 2-cell
system and for many cells under certain conditions. For
a 2-cell system, the bifurcation occurs at D, = a/2 at
which the two saddles coalesce with the unstable node.

When D < a/2 (see Supplemental Material [28]), y =

(1/m\/lalD + /D? + (a + 2D)(a - 2D)*/(a - 2D)
e~(@2D)*(a=D)/6¢ \When D — 0, y — (a/n')efag/&, which
is twice the rate of the single cell [Eq. (3)]. As D increases,
y decreases (dominated by the exponential component), but
as D is close to a/2, the square root term dominates,
causing y to approach infinity. When D > a/2, y =
(a/27)+/[(a+2D)/(a =2D)Je~"/.

Although explicit expressions of ¥ cannot be obtained for
systems larger than 2 cells, they can be obtained under
certain limits, such as small D and large D. At D = 0, the
fixed-point solutions are simply the combinations of those
of the N uncoupled cells, and thus there are 2N solutions.
Since U =0 (x =0) and U = a’/6 (x = a) for a single
cell, then U for the whole system is Uy =0 and U; =
na*/6 (n=1,2,...,N) with C%, solutions in group n. U;
bifurcates as D increases [Fig. 3(b) and Fig. S2(b) [28] ].
Therefore, for D — 0, we can approximate y as

N—1
a 3
— n_,—na’ /6¢e
r=5- ;:1 Cle . (11)

Since y; decays exponentially with U;, the major contri-
butions are from the N saddles with the lowest U;
(U; = a*/6), and others can be ignored. Therefore, in

the leading order, y = (Na/2x)e~*/%. This implies that T
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decreases inversely with N for small D, which is exactly the
case in both the HH model [Fig. 2(c)] and the prototype
model [Fig. 3(e)]. Similarly, for 2D and 3D tissue, at
D =0, y= (N%a/2x)e /% and y = (N3a/2x)e /5,
respectively.

In 1D cable, when D > D. = a/2[1 — cos(z/N)], the
system has only one saddle and y is then calculated as (see
Supplemental Material [28]):

N—1 k
a+2D(1 cosﬁ”) eV (1)
ipla—2D(1 — cos47)
When D — o0, y— (a/2r)eV*/%  and  thus

InT = (Na?/6¢) + In(2x/a). This indicates that at large
D, the increment of InT, i.e., AlInT = (a®/6¢), is inde-
pendent of N. This agrees with the simulation results in

Figs. 2(a) and 3(c). Transition rates similar to Eq. (12) can
be obtained for 2D and 3D tissue (see Eqs. (S26) and (S27)
[28]). When D — 0, y — (a/2x)e NV'@'/% for 2D tissue
and y — (a/2x)e~V'¢"/% for 3D tissue, which implies that
InT = (N?a’/6¢) + In(2n/a) for 2D tissue and InT =
(N3a®/6€) + In(2x/a) for 3D tissue. Therefore, for 2D
tissue and large D, AInT = (2N + 1)a®/6¢, depending on
N, agreeing with the simulation results in Figs. 2(b)
and 3(d).

For D > D_, one uses Eq. (12) to calculate y. However,
for D < D, one needs to obtain numerically the solutions
of the saddles and their eigenvalues, and then use Eq. (10)
to calculate y (see description in Supplemental Material
[28]). For intermediate D (0 < D < D_), we can use the
two saddles (four for 2D) with the lowest U; [see Fig. 3(b)
or Fig. S2(b) [28] ] to calculate y since the contribution of
the higher ones can be ignored. Figures 3(c) and 3(d)
compare the theoretical results (lines) with the simulation
results (symbols) of the prototype model for 1D cable and
2D tissue, respectively. A quantitative comparison of the
theory with the simulation results of the HH model in
Figs. 2(a) and 2(b) is shown in Fig. S4 [28]. We also
compare the theory with simulations of both the prototype
model (Fig. S5 [28]) and the HH model (Fig. S6 [28]) with
lower excitabilities, which shift D, to a larger value to
allow a better comparison for D < D,. These results show
that the theory agrees very well with the simulations of both
models except at the bifurcations, where T — 0 since one
of A, becomes zero (thus y — co). This is a caveat of the
theory [Eq. (10)]. In the comparison of the theory with the
results of the HH model, a and ¢ for the theory are
determined only using two data points of the simulation
results at large D and D is rescaled using data of one 1D
cable (see Supplemental Material [28]). Interestingly, the
theory using these parameter values matches quantitatively
well with the results of the HH model and the prototype
model and is applicable to any N and dimension.

This indicates that the theory captures well the dynamics
of pacemaker firings in coupled systems.

The theory can provide a mechanistic explanation for the
nonmonotonic dependence of T on N based on Egs. (11)
and (12). Since D, = a/2[l1 —cos(n/N)] for the last
bifurcation, increasing N moves the bifurcation point to
a larger D. Therefore, for a fixed D, when N is small, the
system is in the right side of the bifurcation point, y is then
determined by Eq. (12), and thus T increases with N. When
N is larger than a critical number, the system shifts to the
left side of the bifurcation point. According to Eq. (11),
contributions from multiple saddles cause T to decrease
with N. These two competing effects result in the non-
monotonic dependence of 7 on N.

A nonmonotonic dependence of 7 on D is also observed
for weak coupling in both 1D and 2D models, i.e., T first
decreases and then increases as D increases from zero
[Fig. 4(a)]. This behavior was also reported previously
[24,33,34]. Our theory provides a mechanistic interpreta-
tion for this behavior. Based on Egs. (3) and (11), once
D > 0, T will change suddenly from 7' = (27/a)e"/%¢ for
a single cell to 7' = (2z/Na)e*"/% for an N-cell cable or
T = (2r/N?a)e® /% for an N x N-cell tissue. That is, as D
increases from zero, T begins to decrease suddenly.
However, the decrease is more gradual in the HH model
due to the source-sink effect.

When the tissue size is large enough, phase transitions of
the spatiotemporal dynamics occur under weak coupling.
Figure 4(b) shows voltage snapshots for different D values
in a 100 x 100 cell tissue. There are three phase transitions
as marked by the arrows in Fig. 4(a). The first transition is
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FIG. 4. Effects of weak coupling on 7 and spatiotemporal
dynamics in the HH model. (a) T versus D for a 10-cell
cable, 5 x5-cell tissue, and 100 x 100-cell tissue. (b)
Voltage snapshots for different D values in the 100 x 100 cell
tissue. Top: from left to right D = 1 x 105, D =2x 107>, and
D =3x107 cm?/ms. Bottom: from left to right, D =
4x10°5,D=5x103,and D =12 x 107 cmz/ms. (c) Aver-
aged voltage from a 20 x 20-cell area in the center region for the
same D values as in (b). € = 0.002.
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from uncoupled individual firings to collective firings. In
this regime (D is very small), the system exhibits small
firing clusters without propagation [top left in Fig. 4(b)].
As D increases, the pattern changes from firing clusters to
glass-like patterns consisting of a mixture of spirals and
firing clusters (top middle), and then to pure spiral waves
(top right). As D increases further, the pattern changes from
spiral waves to multiple foci or pacemakers (bottom
panels). It is also unsurprising that the rhythm is more
synchronous as D increases [Fig. 4(c)]. Similar transitions
have been shown in experiments of cardiac excitable
media [22,23].

Note that the occurring of spiral waves shortens T further
[Fig. 4(a)]. This is because when spiral waves occur, the
firing frequency is determined by the rotation of the spiral
wave, and noise only has a small effect. In this region
[between arrows 2 and 3 in Fig. 4(a)], the Kramers rate
theory fails. As D increases, however, pacemakers occur,
the Kramers rate theory remains valid, following the rules
as shown in Figs. 2(b) and 3(d), as well as the same & and T
relationship, i.e., 6 = (T — Tpyn) (see Fig. S7 [28]).

In conclusion, we develop a Kramers theory of coupled
cells to describe the firing dynamics of pacemakers in noisy
excitable media. The theory correctly describes the behav-
iors of the prototype model except at the bifurcation points.
The prototype model (and the theory) captures well the
behaviors of the HH model except when spiral waves occur
at weak coupling. It provides mechanistic insights into the
formation and dynamics of rhythmic activities in biological
systems [I-11] as well as disease development. For
example, the insight that as D increases, the firings occur
via multiple barriers to via a single barrier, causing the
firings to be more synchronous, agrees with that stronger
gap junction coupling promotes seizure [35]. At weak
coupling, transitions from pacemakers to spiral waves
occur. This can account for sinus node tachycardia [36],
or arrhythmogenesis in the atria and ventricles with fibrosis
[37]. This can also be responsible for spontaneous spiral
wave formation in the mammalian cortex [38,39] or slime
mold [6,7].
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