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Understanding crystal shapes is a fundamental subject in surface science. It is now well studied how
chemical bondings determine crystal shapes via dependence of surface energies on surface orientations.
Meanwhile, discoveries of topological materials have led us to a new paradigm in surface science, and one
can expect that topological surface states may affect surface energies and crystal facets in an unconven-
tional way. Here, we show that the surface energy of glide-symmetric topological crystalline insulators
(TCI) depends on the surface orientation in a singular way via the parity of the Miller index. This singular
surface energy of the TCI affects equilibrium crystal shapes, resulting in emergence of unique crystal facets
of the TCI. This singular dependence of the topological surface states is unique to the TCI protected by the
glide symmetry in contrast to a TCI protected by a mirror symmetry. In addition, we show that such
singular surface states of the TCI protected by the glide symmetries can be realized in KHgSb with first-
principles calculations. Our results provide a basis for designs and manipulations of crystal facets by using
symmetry and topology.
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Introduction.—One of the fascinating phenomena in
crystal physics is characteristic crystal facets. The surface
energy and the crystal facets affect morphologies of
materials [1–4], and therefore they are vital factors in
controlling properties of nanomaterials [5–10]. In particu-
lar, the surface energies determine equilibrium crystal
shapes [11–13], which can be realized in nanocrystals
[14–16], and the surface energies are mainly determined by
chemical bondings in crystals [17–20].
We expect that exotic surface states of topological

crystalline insulators (TCIs) [21–23] lead to unconven-
tional contributions to surface energies and to unique
crystal facets. Although the crystal shapes of TCIs have
been observed [24,25], it is not well understood how the
topological surface states affect the crystal shapes. Among
TCIs with various crystal symmetries [26–35], those with
nonsymmorphic symmetries are particularly interesting
because of the presence of fractional translations, such
as glide mirror and screw rotations [36–44]. Here, we
focus on a glide-symmetric TCI with time-reversal (T )
symmetry [45–47].
In this Letter, we show that the emergence of the

topological surface states depends on the surface orientation
in a singular way because of the nonsymmorphic nature of
the glide symmetry. In addition, we obtain equilibrium
crystal shapes of the TCI from the surface energies. We
discover that the crystal shapes of the TCI are affected by
the topological surface states, and the TCI has unique facets,
unlike the trivial insulator.

Analysis in terms of crystal symmetry.—Here, we con-
sider nonmagnetic TCIs protected by glide symmetry
Ĝy ¼ fMyj 12 ẑg, i.e., a mirror reflection My with respect
to the xz plane followed by translation by a half of a lattice
vector ẑ along the z direction. Henceforth, we take the
lattice constants to be unity and let x̂, ŷ, and ẑ denote the
primitive vectors. Let us first discuss surfaces with a Miller
index ðαβγÞ, which can be written as αxþ βyþ γz ¼ d,
where d is a constant. Under Ĝy, this plane is transformed
into αx − βyþ γðz − 1

2
Þ ¼ d. The ðαβγÞ surface is glide-

symmetric, if this plane is identical with a plane
αðx − aÞ þ βðy − bÞ þ γðz − cÞ ¼ d, where a, b, c are
integers. Therefore, when the Miller index satisfies
β ¼ 0 and γ ≡ 0 (mod 2), the surface is glide-symmetric.
On the other hand, when β ¼ 0 and γ ≡ 1 (mod 2), the
surface is not glide-symmetric.
Layer constructions.—To construct a surface theory,

we use layer constructions [29,32,42,43], where two-
dimensional topological insulator layers are periodically
located along the out-of-plane direction. Here, we consider
the simplest layer constructions for a glide-symmetric TCI,
which consists of two kinds of layers LA at z ¼ n and LB at
z ¼ nþ 1

2
(n, integer), where LA and LB can be inter-

changed by Ĝy. Next, we introduce weak interlayer
couplings without closing the gap, while preserving Gy

symmetry. Through these procedures, we obtain a three-
dimensional (3D) TCI phase protected by Gy symmetry
[29,42,48–50].
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Henceforth, we consider ðαβγÞ surfaces with β ¼ 0
and γ ¼ 1, 2 in order to see differences between glide-
symmetric (γ ¼ 2) and glide-asymmetric (γ ¼ 1) cases.
Here, the surface becomes equally spaced steps consisting
of the layers LA and LB [Figs. 1(a-1) and 1(b-1)]. We can
classify the configurations of the steps into two types in
terms of the number of layers in each step. In the glide-
symmetric case with γ ¼ 2, α is odd because α and γ
should be mutually coprime. In such a case, a surface step
includes α (¼ odd) layers. On the other hand, in the glide-
asymmetric case with γ ¼ 1, a single step includes 2α
(¼ even) layers. The odd (even) number of layers in each
step leads to gapless (gapped) states.
From our effective surface theory (see Supplemental

Material No. 1 and No. 7 [51]), the energy with γ ¼ 2 is

given by E�
n ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2k2y þ ½mðγ¼2Þ

α ðnÞ�2
q

, where mðγ¼2Þ
α ðnÞ

is a Dirac mass

mðγ¼2Þ
α ðnÞ ¼ 2δcos

�
πn

αþ 1

� �
n¼ 1;2;…

αþ 1

2

�
; ð1Þ

with δ being a real parameter. For the glide-symmetric case
with γ ¼ 2, the bands with n ¼ 1; 2;…ðα − 1Þ=2 are
doubly degenerate, and the band with n ¼ ðαþ 1Þ=2 forms
the gapless surface Dirac cone [Fig. 1(a-2)]. On the other
hand, in the glide-asymmetric case with γ ¼ 1, the energy is

E�
n ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2k2y þ ½mðγ¼1Þ

α ðnÞ�2
q

[51], where the Dirac
mass is

mðγ¼1Þ
α ðnÞ ¼ 2δ cos

�
πn

2αþ 1

�
ðn ¼ 1; 2;…; αÞ: ð2Þ

In this case, all the bands are doubly degenerate, and
gapless states do not appear [Fig. 1(b-2)].
Next, we calculate surface states of the following simple

tight-binding model on a simple orthorhombic lattice:

Hð1Þ
TCIðkÞ ¼ ð−mþ t1 cos kx þ t1 cos kyÞμ0τ3

þ t2 sin kyμ3τ1σ1 þ t3 sin kxμ0τ1σ3

þ ðtAB þ 2t0AB cos kxÞ cos
kz
2
μ1τ0; ð3Þ

where σi, τi, and μi (i ¼ 1, 2, 3) are the Pauli matrices, and
σ0, τ0, and μ0 are the 2 × 2 identity matrices. This model is
constructed by stacking layers of the two-dimensional
topological insulators, as shown in Supplemental Material
No. 2 [51], and its topological invariant is given in
Supplemental Material No. 3 [51]. Figure 1(c) shows
the bulk Brillouin zone and the (100) surface Brillouin
zone. In the following, we calculate this model using the
PYTHTB package [61], and Figs. 1(d)–1(f) shows the band
structures in the slab geometries. For the (101) and (201)
surfaces with odd γ [Figs. 1(d) and 1(f)], the surface states
are gapped. On the other hand, for the (102) surface with
even γ [Fig. 1(e)], the surface states are gapless.
Next, we quantitatively compare the energy gaps of

Hð1Þ
TCIðkÞ with the Dirac mass in Eqs. (1) and (2).

Figures 1(g) and 1(h) show a half of the energy gap at Z̄
point for various surface bands. This value is to be compared
with the Dirac mass in Eqs. (1) and (2). At Z̄ point, the ith

energy closest to the zero energy is given bymðγ¼2Þ
α ðnÞ with

n ¼ ðαþ 1Þ=2 − ði − 1Þ when γ ¼ 2. When γ ¼ 1, it is

given by mðγ¼1Þ
α ðnÞ with n ¼ α − ði − 1Þ. The values of

the Dirac mass perfectly agree with those from Hð1Þ
TCIðkÞ

FIG. 1. (a), (b) The steps of the ðα0γÞ surface consisting of the layers LA and LB with γ ¼ 2 in (a-1) and γ ¼ 1 in (b-1), respectively.
When γ ¼ 2, the α edge modes in each step lead to the surface bands in (a-2). When γ ¼ 1, the 2α edge modes lead to the surface bands
in (b-2). (c) The bulk Brillouin zone and the (100) surface Brillouin zone. (d)–(f) The band structures of Eq. (3) with the parameters
t1 ¼ t2 ¼ t3 ¼ m ¼ 1, tAB ¼ 0.5, t0AB ¼ 0. (g), (h) Comparison of the surface Dirac masses at Z̄ point from the effective theory by

Eqs. (1) and (2) (solid lines) with those from the numerical diagonalization of the simple tight-binding modelHð1Þ
TCIðkÞ (dots), where the

parameter is δ ¼ 0.247 in Eqs. (1) and (2).
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[Figs. 1(g) and 1(h)]. The behaviors of the surface states
discussed so far for the nonmagnetic TCI also hold true in the
magnetic TCI (Supplemental Material No. 4 [51]).
Crystal shape of TCI.—From the surface energies EðαβγÞ

surf ,
we can calculate the equilibrium crystal shape of the TCI by

using the Wulff construction [11,51]. The modelHð1Þ
TCIðkÞ is

a minimal model for understanding the behaviors of the
topological surface states. On the other hand, the surface
energies of this model are quite anisotropic, which leads to
the crystal shape with a very small thickness in the z
direction (see Supplemental Material No. 3 [51]), and it is
difficult to see the effects of the topological surface states
on the crystal shape. Thus, we need another model with a
more isotropic crystal shape and introduce the following
tight-binding model on a simple orthorhombic lattice:

Hð2Þ
TCIðkÞ ¼

�
−mþ

X

j¼x;y;z

tj cos kj

�
μ0τ3

þ vx sin kxμ0τ1σ3 þ vy sin kyμ3τ1σ1

þ vz sin kzμ0τ1σ2

þ ðvab1 þ vab2 cos kxÞ sin
kz
2
μ1τ1σ1: ð4Þ

Both Hð1Þ
TCIðkÞ and Hð2Þ

TCIðkÞ have the same TCI phase, and
the similar dependence of the surface states on the surface
orientations (see Supplemental Material No. 5 [51]).
We calculate the surface energies Eð010Þ

surf and Eðα0γÞ
surf of this

model for various surface orientations up to maximum
absolute values of the Miller index ðαmax; γmaxÞ ¼ ð3; 9Þ,
where EðαβγÞ

surf is defined by Eq. (S.3) in the Supplemental
Material No. 1 [51]. According to the Wulff construction
[11], we can obtain the equilibrium crystal shape minimiz-
ing the total surface energy as the following 3D region:

W ¼ ∩
nαβγ∈S2

Γnαβγ ; ð5Þ

Γnαβγ ¼ fr ∈ R3jr · nαβγ ≤ EðαβγÞ
surf g; ð6Þ

where nαβγ is the outward unit normal vector to the ðαβγÞ
surface, and S2 is the unit sphere. By using the
WULFFPACK package [62], we obtain this shape from

EðαβγÞ
surf . Figures 2(a-1) and 2(b-1) show the equilibrium

crystal shapes of Hð2Þ
TCIðkÞ with the trivial insulator phase

and the TCI phase, respectively. We show the dependence
of the surface energies on the surface orientations as a
function of the angle θ between the surface and the (100)
plane, defined by tan θ ¼ γ=α [Figs. 2(a-2) and 2(b-2)].
To analyze the results, we introduce the following trial
function:

FðθÞ ¼ Δx cos jθj þ Δz sin jθj
þ Δxz sin jθ − θ102j þ Δxz sin jθ þ θ102j; ð7Þ

where θ102 is the angle satisfying cos θ102 ¼ 1=
ffiffiffi
5

p

and sin θ102 ¼ 2=
ffiffiffi
5

p
. This function can be obtained by

the analysis in terms of the numbers of dangling bonds on
the surface (see Supplemental Material No. 6 [51]). The
surface energy of the trivial insulator can be fitted perfectly
with FðθÞ [Fig. 2(a-2)], and therefore the facets of the
trivial insulator are determined mainly by the surface
energy from chemical bonding (SECB).

FIG. 2. (a), (b) Equilibrium crystal shapes and surface energies

of Hð2Þ
TCIðkÞ with the parameters tx ¼ ty ¼ tz ¼ 1, vab1

¼ 0.8, and vab2 ¼ 1.2. The other parameters are m ¼ 6,
vx ¼ vz ¼ 0.4, and vy ¼ 0.6 in (a) and m ¼ 2, vx ¼ vy ¼ vz ¼
0.4 in (b). The ð10γÞ surface energy from γ ¼ 0 to γ ¼ 9. The

dots are determined by EðαβγÞ
surf . (a-2) The surface energy can be

fitted with FðθÞ with Δx ¼ 0.02218, Δz ¼ 0.03806, and
Δxz ¼ 0.03414. (b-2) We fit the total surface energy (orange)
and the total surface energy without the SETS (blue) with FðθÞ
with Δx ¼ 0.2445, Δz ¼ 0.2490, and Δxz ¼ 0.07343 in the
former case and Δx ¼ 0.08238, Δz ¼ 0.1940, and Δxz ¼
0.1340 in the latter case. (c) The equilibrium crystal shape from
the surface energies of (b-2) without the SETS. (d) The SETS in
the TCI. (e) Comparison of Δxz=Δi (i ¼ x, z) for the trivial
insulator in (a-2), the TCI [orange fitting in (b-2)], and the TCI
without the SETS [blue fitting in (b-2)]. (f) The equilibrium

crystal shape when Hð2Þ
TCIðkÞ has the more distant hopping term

with m ¼ 2, tx ¼ ty ¼ tz ¼ 1, vx ¼ 0.4, vy ¼ 0.6, vz ¼ 0.2,
vab1 ¼ 0.8, vab2 ¼ 0.9, and vab3 ¼ 0.8.
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Next, we discuss the surface energy of the TCI in
Fig. 2(b-2). The appearance of the (101) and the (201)
facets in Fig. 2(b-1) suggests a new mechanism other than
the SECB. Here, we attribute it to the surface energy
obtained only from the bands forming the Dirac cones.
We refer to this as the surface energy from topological
surface states (SETS), which is defined by Eq. (S.4) in
Supplemental Material No. 1 [51]. Figure 2(b-2) also shows
the total energy minus the SETS. We fit the total surface
energy and the total surface energy without the SETS with
Eq. (7), and in the latter fitting a sharp dip at θ ¼ θ102
appears, which is similar to the surface energy in the trivial
insulator in Fig. 2(b-1). In addition, we calculate the
equilibrium crystal shape from the surface energies of
the TCI without the SETS [Fig. 2(c)]. This result shows
that the (101) and the (201) facets are due to the SETS.
Figure 2(d) also shows the SETS in the TCI.
We confirm the above interpretation by analyzing the

fitting data for Δx, Δz, and Δxz. Figure 2(e) shows a
comparison of Δxz=Δi (i ¼ x, z) for the cases correspond-
ing to Figs. 2(a-1), 2(b-1), and 2(c). In the trivial insulator,
Δx, Δz, and Δxz are of a similar order of magnitude,
corresponding to hoppings almost isotropically distributed
in the xz plane. In the TCI phase, the hopping parameters
used in our calculation are almost the same as the trivial
insulator phase, but unexpectedly, Δx, Δz, and Δxz become
quite anisotropic [Fig. 2(e)]. We see from Fig. 2(e) that it
restores the isotropic behavior by subtracting the SETS.
A more detailed discussion is in Supplemental Material
No. 5 [51]. Thus, we conclude that the unique crystal shape
of the TCI are due to the SETS. Figure 2(f) also shows the
crystal shape when we add a more distant hopping term

vab3 cos 2kx sinðkz=2Þμ1τ1σ1 to Hð2Þ
TCIðkÞ. In this case, the

additional facets appear because of the interplay between
the SETS and the SECB from the bonds in various
directions.
Material realization.—Here, we show that these singular

surface states can be realized in KHgSb proposed as a
Ĝx-symmetric TCI with space group #194 [47], where Ĝx ¼
fMxj 12 ẑg with Mx being a mirror reflection with the
yz mirror plane. It has a phase transition to #186 when T <
150 K [63], and here we will discuss the low-temperature
phase with #186. Figures 3(a) and 3(b) show the crystal
structures of KHgSb. Figure 3(c) is the Brillouin zone and
the (010) surface Brillouin zone. To make it easier to see
whether the surfaces are glide-invariant or not, we double the
original hexagonal unit cell and take an orthorhombic unit
cell with the lattice vectors a1 ¼ ðA; 0; 0Þ, a2 ¼ ð0; B; 0Þ,
and a3 ¼ ð0; 0; CÞ, where A, B, and C are lattice constants.
The enlarged unit cell leads to a translation symmetry given
by T̂ ¼ fEj 1

2
a1 þ 1

2
a2g. The index ðαβγÞ in this ortho-

rhombic lattice is different from the conventional Miller
index in hexagonal crystals.
Next, we consider the conditions for the ðαβγÞ surface to

be glide-symmetric in these symmetry settings. Let a plane

P be the ðαβγÞ plane. Under Ĝx, the plane P is transformed
into P̃. The plane P is glide-symmetric when P̃ is
equivalent to either P or P0, where P0 is the plane trans-
formed from P via T̂. In the former case, the index satisfies
(i) α ¼ 0 and γ ≡ 0 (mod 2), and in the latter case, the index
satisfies (ii) α ¼ 0 and β − γ ≡ 0 (mod 2). When the index
satisfies (i) or (ii), the ðαβγÞ surface is symmetric under the
glide Ĝx symmetry.
The surface states on four different surfaces are shown in

Figs. 3(d)–3(g), which have gapless hourglass surface states
for the (011) and (012) surfaces because of the presence of
the glide symmetry, but gapped surface states for the (021)
and (023) surfaces because of the absence of the glide
symmetry. These results are consistent with our analysis in
terms of symmetries in the previous paragraph and can be
observed by angle-resolved photoemission spectroscopy.
Because these results are due to the glide symmetry, a
similar result is expected in the high-temperature phase with
space group #194. On the other hand, the gaps of the (021)
and the (023) surface states are 2.4 meV and 2.6 meV,
respectively. Therefore, the surface gap is smaller than
temperatures in crystal growth, and the effects of these small
band gaps cannot be reflected in crystal shapes in this
material.
The smallness of the gaps on the glide-asymmetric

surface states in KHgSb is attributed to weak interlayer
coupling of KHgSb [63]. The gaps on the glide-asymmetric
surfaces are proportional to the strength of the interlayer

couplings, as seen from the calculation of Hð1Þ
TCIðkÞ. Thus,

the glide-symmetric TCIs with stronger interlayer coupling
are suitable for experiments. In addition, nanocrystals
are suitable for experimental realization of equilibrium
crystal shapes.

FIG. 3. (a), (b) Crystal structure of KHgSb. (c) The bulk
Brillouin zone and the (010) surface Brillouin zone for KHgSb
with space group #186. (d)–(g) Surface states of KHgSb for
various surfaces.
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Summary and Discussion.—Here, we discuss another
type of TCI, i.e., a TCI with surface states protected by a
mirror My symmetry. The surface states can affect the
equilibrium crystal shapes. On the other hand, in this Letter,
we theoretically show novel dependence of presence or
absence of gapless topological surface states on the parity
of the surface Miller index. This is unique to the TCI
protected by glide symmetry. As we show in Supplemental
Material No. 8 [51], the gapless surface states survive
surface reconstructions. We discovered that the topological
surface states significantly affect the facets realized in the
TCI by calculations of the model. The facets of the TCI can
be determined by the interplay between the surface energy
from chemical bonding and that from the topological
surface states.
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