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The segregation of solute atoms at grain boundaries (GBs) can strongly impact the structural and
functional properties of polycrystals. Yet, due to the limited availability of simulation tools to study
polycrystals at the atomistic scale (i.e., interatomic potentials), there is a minimal understanding of the
variation of solute segregation tendencies across the very complex space of GB microenvironments and the
large range of alloys in which it can occur. Here, we develop an algorithmic framework that can directly
learn the full spectrum of segregation energies for a metal solute atom in a metal polycrystal from ab initio
methods, bypassing the need for alloy interatomic potentials. This framework offers a pathway to a
comprehensive catalog of GB solute segregation with quantum accuracy, for the entire alloy space. As an
initial demonstration in this pursuit, we build an extensive GB segregation database for aluminum-based
alloys across the periodic table, including dozens of alloys for which there are substantially no prior data.
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A perennial fundamental problem in metal physics is
solute segregation at grain boundaries (GBs) in polycrystal-
line alloys [1–3]. Such segregation can occur with only a
trace presence of a solute, and yet can strongly impact
mechanical, electrochemical, electrical, and magnetic prop-
erties, to name a few [4–6]. And, as most metals are used in
a polycrystalline form, this phenomenon has wide-ranging
engineering implications for the design and use of alloys
[6]. The main driving force for solute segregation comes
from the atomically disordered nature of GBs, which
results in an array of local atomic environments (site types)
that can be more accommodating to the solute atom than
the intragrain (bulk) highly ordered lattice environment.
The nature of the spectrum of site types at the GBs, and the
degree to which each site type accommodates the solute
atom, i.e., the segregation energy for a solute atom at that
site type, determines the extent of equilibrium GB solute
segregation [7–10]. A major challenge is that very little
is known about this spectrum of GB site types (and
the corresponding segregation energies for solutes) in
polycrystals.
Recently, in Ref. [11], we took some first steps to tackle

this challenge. Using molecular statics and dynamics
simulations to exhaustively compute the segregation ener-
gies (as defined in Supplemental Material [12], Sec. 1) for
an Mg solute at all GB site types in a randomly oriented
aluminum polycrystal, we found the spectrum of GB site
types to be captured by a skew-normal distribution.
Subsequently, in Ref. [13], we developed a learning
framework that can predict the segregation energy of a
solute atom at a GB site, based solely on its presegregation
(undecorated) local atomic environment, for systems that
have extant interatomic potentials. Unfortunately, the use of

interatomic potentials is a severe limitation. There are only
a limited number of available potentials, and few of those
are accurate for the special conditions of GB segregation
[14]. One obvious solution to these limitations is to develop
more alloy interatomic potentials that are quantum accu-
rate, which is becoming increasingly possible with the
advent of machine-learning-based potentials [15,16].
However, this remains far from a trivial task, since state-
of-the-art interatomic potentials are expensive to develop
[17,18]. Their fitting typically requires a reference database
of thousands of expensive ab initio calculations of atomic
configurations, often chosen painstakingly through a
manual procedure to ensure good coverage of the structural
and chemical space. And though there are new interesting
developments [19,20] that could potentially reduce the
number of required training configurations and automate
their selection procedure, this is still an active area
of research that needs to be tested for its ability to capture
(or extrapolate to) complex grain-boundary atomic
environments.
Therefore, in this Letter, we take an alternative approach

that bypasses the need for accurate interatomic potentials
for the problem of GB solute segregation, by directly
passing from ab initio calculations to a full macroscale GB
segregation isotherm for polycrystals. The framework
combines a learning model with hybrid quantum mechan-
ics–molecular mechanics (QM-MM) calculations, and
requires only an interatomic potential for the base (solvent)
metal. Using aluminum [21] as the model base metal, we
showcase the power of our learning framework by calcu-
lating—for the first time—GB solute segregation spectra in
polycrystals for all group II, transition, and post-transition
metals (excluding lanthanides, actinides, and synthetic
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elements)—a total of 39 solute metals. Our approach favors
simplicity and flexibility, and is designed to be easily
adapted to treat other base metals.
Our ab initio based framework has two key components,

as illustrated in Fig. 1. First is the learning model, which
enables the unsupervised selection of an optimal 100
training data points in polycrystalline GB environments,
i.e., without any knowledge of the target properties (seg-
regation energies), and the fitting of a regression model that
can be used to accurately predict the segregation energies
for all other GB sites in the polycrystal. In Ref. [13], we
have shown that this learning model can accurately predict
the segregation energies for large numbers of GB environ-
ments that are sampled in random microstructures (where
the sampling probability of GB disorientation angles
follows the Mackenzie distribution), and across multiple
alloys. This model can be used to treat any subset of the GB
disorientation space (e.g., low-angle boundaries, or sub-
populations of the polycrystalline GB microenvironments,
e.g., triple junctions and quadruple nodes [22]) by selecting
a base polycrystal that samples the subset of interest).
However, here we are interested in the full polycrystalline
environment, and therefore use a randomly oriented alu-
minum polycrystal, as shown in Fig. 1(a). And thus, the
selection of training data points is optimized to reduce
overall errors for a random microstructure.
We refer the reader to Ref. [13] for a more detailed

description of the learning model; we briefly reiterate its

main pieces here through the summary provided in Fig. 1.
The model consists of four main steps: (i) feature extrac-
tion, (ii) reduction of the dimensions of features, (iii) selec-
tion of training data points (for which to calculate
segregation energies), and (iv) the learning algorithm.
For feature extraction, each GB site and its local atomic
environment within a radius of 4.5 Å, as illustrated in
Fig. 1(b), is transformed into a feature vector or a
“fingerprint” using the smooth overlap of atomic positions
(SOAP) method [28,29]. The feature vector size is deter-
mined by the SOAP hyperparameters; here, we use 10 radial
basis functions, 10 degrees of spherical harmonics, and
0.5 Å smearing width for the Gaussian functions in SOAP,
which results in a vector length of 606 features. Thus, the
initial input feature matrix is [NGB × 606] in size, as
illustrated in Fig. 1(c). Using this matrix as input to the
learning algorithm would require the fitting of hundreds of
coefficients (even if simple linear regression were used),
which would require thousands of training data points. This
is far too expensive for QM calculations, especially for the
purpose of screening. Thus, to simplify the learning
problem, we use principal component analysis (PCA)
[30,31] to reduce the dimensionality of the initial feature
matrix by projecting it into a low-dimensional representa-
tion, i.e., principal components that maximize the variance
of the data. As the first 10 principal components capture
more than 99% of the variance in the data [Fig. 1(d)], we
use them as input features [ [NGB × 10] in size as shown in

FIG. 1. An illustration of the ab initio based learning framework for GB segregation energies. For (a) the annealed ð20 nmÞ3 aluminum
polycrystal [23–27], we convert the (b) local atomic environment of every GB site within a cutoff radius of 4.5 Å into (c) a feature vector
of 606 dimensions using the SOAP method [28,29]. (d) PCA [30,31] is used to transform the feature matrix into a low-dimensional
space, and obtain the first 10 principal components (which capture>99% of the variance in feature space). Using (e) the reduced feature
matrix, we apply (f) k-means clustering [32,33] to divide GB sites into 100 clusters, and use the centroids of the clusters as the training
data points for the model, for which segregation energies need to be calculated using (g),(h) QM-MM method as detailed [34–42] in
Supplemental Material, Sec. 4 [12]. (i) Linear regression is used to fit a learning algorithm to the training dataset, and to predict (j) the
segregation energies of all GB sites in the polycrystal (i.e., the full spectrum) as shown, e.g., for Cu solute segregation in Al polycrystals.

PHYSICAL REVIEW LETTERS 129, 046102 (2022)

046102-2



Fig. 1(e)] to the learning algorithm instead of the initial
SOAP matrix ([NGB × 606] in size). The reduced PCA
features reduce the learning problem to a great extent, and
based on our previous work in Ref. [13], are expected to
perform well (in a learning model) with errors on the order
of ∼5 kJ=mol for a spectrum that spans ∼100 kJ=mol.
The next step in the model is the selection of training

data points, whose number is determined by the complexity
of the learning algorithm. In our framework, we use linear
regression as the learning algorithm, and thus as a rule of
thumb, approximately 100 data points are sufficient [43] to
fit the 10 coefficients and the intercept. To choose the
training data points, we use k-means clustering [32,33] to
divide the GB space into 100 clusters based on the
proximity of local atomic environments in PCA feature
space. Then, for each cluster, we choose the GB site that is
closest (i.e., shortest Euclidean distance) to its centroid, and
use this site as the representative training data point, as
shown in Fig. 1(f). (The use of k-means clustering, as
opposed to random sampling, ensures better coverage of
the full GB feature space.) The end result of this unsu-
pervised learning component of the framework [Figs. 1(a)–
1(f)] is the choice of 100 optimal GB sites for which we
need to calculate the solute segregation energy to train the
regression algorithm [Fig. 1(I)].
Second, the hybrid QM-MM scheme, which we use to

compute the segregation energy for the 100 training data
points. This type of hybrid scheme has been used in the
literature, though in a limited capacity, to model complex
processes for large metallic systems [44,45] inaccessible to
QMmethods that are typically limited to O(100) atoms (see
Ref. [46] for a detailed review); for example, dislocation
motion [47–49], and solute interactions with dislocations
[50], and grain boundaries [51,52].
A typical setup for the QM-MMmethod [46] is shown in

Figs. 1(g) and 1(h). We use QM to treat the local atomic
environment of the GB segregation site, which we call the
“core” region [the yellow region in Fig. 1(g)], and use MM
to treat the long-range elastic interactions in the rest of the
polycrystal. To do the QM calculation, we carve out a
cluster that contains the core region, and a “buffer”
surrounding region [the green region in Fig. 1(g)], and
feed it to QM, after adding a vacuum layer of 10 Å in all
directions to remove periodic image effects in the supercell
[Fig. 1(h)]. The buffer region facilitates the seamless back-
and-forth coupling between QM and MM. It should be
large enough to minimize any changes in the electronic
structure of the core region atoms induced by the intro-
duced free surface [outer area of the buffer region Fig. 1(h)]
in the QM supercell calculation. The implementation
details for the hybrid QM-MM scheme used here are
described in Supplemental Material, Sec. 4 [12].
The main goal for the QM-MM procedure is to compute

similar GB solute segregation energies as if the whole
system were treated by QM. To test against this goal, we

compare the segregation energies obtained by QM-MM
[Supplemental Material, Eq. (S.3)] against full QM calcu-
lations in Fig. 2. Because full QM is not possible for most
of the polycrystalline environments of interest, for this
validation we are limited to special, symmetric sites. For
nine different solute elements that sample the alloy space
(>20% of all solutes studied), we explore theP

5ð01̄ 3̄Þ GB, which has four unique GB site types
(highlighted with red-dashed circles) as shown in Fig. 2
(see Supplemental Material [12], Sec. 5 for more details
[53] on the computational setup). Overall, as shown in
Fig. 2, the QM-MM approach results in low errors in
segregation energies, with the mean absolute error being
less than 6 kJ=mol on a problem with a scale spanning
∼200 kJ=mol. Additionally, the method correctly captures
the variation in segregation energies across both the alloy
and GB spaces for this narrowly defined test problem. We
therefore expect a similar performance level (error on the
order of ∼5 kJ=mol) for the QM-MM scheme for the
polycrystal.
In general, our ab initio based learning approach is easy

to adapt and fine-tune. Errors from the different compo-
nents can be systemically reduced. For the ML component,
lower errors can be obtained by using: more data points for
training; more features and/or a larger radius cutoff to
describe the local atomic environment; or a more sophis-
ticated learning algorithm. And similarly, errors for the
QM-MM component can be reduced by using: a larger
buffer region; a more accurate functional and/or basis set
for the density functional theory calculations; or a higher-
level quantum chemical simulation method. Such modifi-
cations, however, will come at a higher computational cost,
and thus should be reserved for postscreening efforts, e.g.,
adding more training data points to alloys of high interest.
However, for screening, we find the parameters defined

FIG. 2. Comparison between QM-MM and full QM computed
segregation energies for Ag, Au, Nb, V, Y, Cu, Cd, Ga, and Be in
an aluminum

P
5ð01̄ 3̄Þ GB, which has four unique sites high-

lighted by dashed red circles.
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herein and in Supplemental Material [12] for the learning
and QM-MM approach to be a good balance between
accuracy and speed (cost). We also note that our framework
provides a pathway to tackle, with QM accuracy, the more
complex problems of nondilute [54–56] and higher-order
alloys [57–59] (i.e., ternary and higher), which, in addition
to understanding the spectrum of segregation energies,
requires a comprehensive understanding of the magnitude
of solute-solute interactions in the system. We expect this to
be a major direction for future studies.
In Fig. 3, we plot the learned GB segregation spectra for

all 39 solutes in an aluminum polycrystal. These spectra
capture the complete range of possible segregation states
with near quantum-level accuracy, and are widely variable
for different alloying elements. As an illustration
of this, each panel in Fig. 3 is colored by the magnitude
of the specific solute excess, βGB ¼ ½X̄GB=ð1 − X̄GBÞ�
½ð1 − XcÞ=Xc�, that is expected at a total solute concen-
tration of 5% and a temperature of 700 K [where X̄GB, Xc

are the equilibrium solute concentration at the GB and bulk
(intragrain) regions, respectively; see Supplemental
Material, Sec. 6 [12] for more details]. For other conditions
(concentration, temperature), the spectra in Fig. 3 can be
fitted with the following skew-normal distribution function:

FGB
i ðΔEseg

i Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ
exp

�
− ðΔEseg

i − μÞ2
2σ2

�

× erfc

�
−αðΔEseg

i − μÞffiffiffi
2

p
σ

�
; ð1Þ

which requires only three fitted parameters—the location μ,
the scale σ, and the shape (skewness) α. The fitted

parameters for each solute in aluminum are shown in
Fig. 3, which should permit accurate thermodynamic
calculations of GB segregation for future works on alumi-
num alloys, using the continuous form of the spectral
segregation isotherm [11]:

Xtot ¼ ð1 − fGBÞXc þ fGB
Z

∞

−∞
FGB
i ðΔEseg

i Þ

×

�
1þ 1 − Xc

Xc exp

�
ΔEseg

i

kBT

��−1
dðΔEseg

i Þ; ð2Þ

where Xtot is the total solute concentration in the poly-
crystal, fGB is the GB atomic site fraction, kB is
Boltzmann’s constant, T is the temperature.
It is scientifically important that all solute segregation

spectra are well approximated by the skew-normal distri-
bution function (as shown in Fig. 3 by the solid black lines).
This result matches earlier observations based on calcu-
lations with interatomic potentials [13] but extends the
utility of Eq. (1) to DFT-computed segregation energies. In
fact, among the 39 solutes represented in Fig. 3, only 16
have available potentials in the NIST Interatomic Potentials
Repository [60,61]. The present result thus offers a path-
way not only to higher physical accuracy in the calibration
of Eq. (1), but also a means of covering the vast gaps in
the alloy space not addressed by existing potentials. In fact,
the present approach may be preferable to using existing
interatomic potentials to study GB solute segregation.
Consider the case of Al(Cu), which is a well-studied alloy
with multiple available interatomic potentials. In Fig. 4(a),
we plot the segregation spectra for Al(Cu) for five different
interatomic potentials [62–66], alongside the QM-MM

FIG. 3. The QM-MM learned GB solute segregation spectra for 39 solutes in the ð20 nmÞ3 aluminum polycrystal shown in Fig. 1(a).
The segregation strength, lnðβGBÞ, is quantified by solving for the equilibrium segregation state for Xtot ¼ 5% and T ¼ 700 K.We fit the
spectra to the skew-normal function (solid black line), Eq. (1), and list the values for its three parameters, μðkJ=molÞ, σðkJ=molÞ, and α.
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learned spectra from this work. It is clear that the spectra are
highly variable, and as a result, the expected solute
segregation behavior is essentially not accurately predict-
able for any of the potentials; compare the solute content at
100 nm grain size and 700 K for the potentials (colored
lines) with the quantum-based result from the present
model (black line) in Fig. 4(b). Two of the potentials
[65,66] give predictions for X̄GB that are an order of
magnitude different from QM-MM. And it is indeed the
QM-MM approach that most closely matches fully elec-
tronic results, as shown in Fig. 4(c) for four unique sites of
the

P
5ð01̄ 3̄Þ GB. This result highlights that even when

interatomic potentials exist, they may not produce accurate
results without extensive validation and testing against QM
(assuming that QM is the ground truth); in light of this, the
present combined learning and QM-MM approach may be
an ideal balance of speed and quantum accuracy for any
system, even if potentials already exist.
In conclusion, we have developed a flexible and easy-to-

adapt ab initio–based framework that can learn the spec-
trum of solute segregation energies in a polycrystal, without
the need for alloy interatomic potentials. To illustrate its
power, we used the framework to compute the GB
segregation spectra for a large swath of the aluminum-
based alloy space (a total of 39 solutes)—a task currently
infeasible using interatomic potentials. The proposed
framework provides researchers with a simple but powerful
tool to fully understand the variation of solute segregation
across both the polycrystalline GB site space, as well as the
binary alloy space. The combination of rapid computability
with quantum-level accuracy for all realistic GB segrega-
tion sites in a polycrystalline environment represents a
significant shift in the scope of GB segregation modeling
toward genuine physical correctness.
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