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By the Parisi-Sourlas conjecture, the critical point of a theory with random field (RF) disorder is
described by a supersymmeric (SUSY) conformal field theory (CFT), related to a d − 2 dimensional CFT
without SUSY. Numerical studies indicate that this is true for the RF ϕ3 model but not for the RF ϕ4 model
in d < 5 dimensions. Here we argue that the SUSY fixed point is not reached because of new relevant
SUSY-breaking interactions. We use a perturbative renormalization group in a judiciously chosen field
basis, allowing systematic exploration of the space of interactions. Our computations agree with the
numerical results for both cubic and quartic potential.
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Introduction.—Emergent symmetries are a frequent
theme in modern theoretical physics. Such a symmetry
is present at long distances but is not visible in the
microscopic description of the system. A beautiful example
is furnished by the physics of disordered systems, namely
by the random field Ising model (RFIM) and its cousins.
Parisi and Sourlas suggested long ago [1,2] that the critical
points of these models obey emergent supersymmetry.
While supersymmetry plays a prominent role in high-
energy physics, its appearance in the statistical physics
context came as a major surprise. A dramatic consequence
of supersymmetry is dimensional reduction [3]: the critical
exponents of a disordered system in d dimensions should
be the same as those of the pure (i.e., nondisordered)
system in d − 2 dimensions.
Unfortunately, after 40 years of work, there is still no

complete understanding whether, when, and how Parisi-
Sourlas supersymmetry actually emerges. Most work has
focused on the random field ϕ4 and ϕ3 field theories,
describing respectively the phase transition in RFIM and
the statistics of branched polymers (BP) in a solution [4–6].
Numerical studies of microscopic models suggest that
supersymmetry and dimensional reduction are present in
any dimension for the ϕ3 case [7] but only in sufficiently
high d for the ϕ4 case [8–11]. Why does this happen? One
possibility is that some supersymmetry (SUSY)-breaking
perturbations are dangerously irrelevant, i.e., irrelevant for
high d, and become relevant at lower d and break
supersymmetry [12,13] [14]. In this Letter we will report
the first systematic exploration of this scenario. We will
show that it gives a satisfactory unified description of

phenomenology in agreement with all available numerical
results [15].
The model and prior work.—A random field (RF) model

describes a statistical field theory with quenched disorder
coupled to a local order parameter. We consider RF models
of the type

S½ϕ; h� ¼
Z

ddx

�
1

2
ð∂μϕÞ2 þ VðϕÞ þ hðxÞϕðxÞ

�
; ð1Þ

where hðxÞ is drawn from a Gaussian distribution with zero
mean and hðxÞhð0Þ ¼ HδðxÞ. Parisi-Sourlas (PS) conjec-
ture [1] about the critical points of these theories can
be naturally divided in two parts: (1) Emergence of SUSY.
The critical point of a RF theory is described by a special
SUSY conformal field theory (CFT) (PS CFT).
(2) Dimensional reduction. A large class of observables
of the PS CFT (e.g., its critical exponents) is described by an
ordinary CFT living in d̂≡ d − 2 dimensions.
While perturbatively valid for d infinitesimally close to

the upper critical dimension duc (see below), this remark-
able conjecture is known to sometimes fail for the physi-
cally interesting cases of integer d < duc.
As mentioned, the two most studied RF models are with

ϕ4 (RFIM) and ϕ3 (BP) potentials. The RF ϕ4 model has a
critical point in 3 ≤ d < duc ¼ 6. PS conjecture would
relate it to the usual Ising model in d̂ dimensions.
Numerical studies [8–11] show that while both SUSY
and dimensional reduction hold in d ¼ 5, the conjecture
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fails in d ¼ 4. It also fails trivially for d ¼ 3, as the d̂ ¼ 1
Ising model has no phase transition.
Similarly, the critical point of the RF ϕ3 model with

imaginary coupling should be described by the usual Lee-
Yang fixed point in d̂ dimensions [22]. BP critical exponent
simulations suggest that this instance of PS conjecture
works perfectly for any 2 ≤ d < duc ¼ 8 [7,23].
Let us come back to the central question of why PS

conjecture sometimes works and sometimes fails. Many
perturbative and nonperturbative arguments were given for
Part 2 of the conjecture [1,25–29]. On the other hand Part 1
appears to be on less solid ground. Here we will focus on
the scenario [12,13] that Part 1 may fail due to dangerously
invariant SUSY-breaking interactions.
From replicas to Cardy fields.—We start by using the

usual replica method where we take n copies of the action
[Eq. (1)] and average out the disorder. This gives the replica
action

Sn ¼
Z

ddx
�Xn
i¼1

½ð∂μϕiÞ2 þ VðϕiÞ� −
H
2

�Xn
i¼1

ϕi

�
2
�

ð2Þ

from which one can get quenched averaged correlations
functions hAðϕÞi in a n → 0 limit by simply computing
hAðϕ1Þi having a single replica field.
We next apply Cardy’s linear field transform [30],

φ ¼ 1

2
ðϕ1 þ ρÞ; ω ¼ ϕ1 − ρ; χi¼i≠1ϕi − ρ; ð3Þ

with ρ ¼ ð1=n − 1ÞPn
i¼2 ϕi and the condition

P
n
i¼2 χi ¼ 0.

Turning off interactions for now (V ¼ 0), the transformed
Lagrangian takes the form

Lfree ¼ ∂μφ∂μω −
H
2
ω2 þ 1

2

Xn
i¼2

ð∂μχiÞ2: ð4Þ

Here and below, because of the replica limit n → 0, we are
dropping all terms proportional to powers of n.
From Eq. (4) we read off the classical scaling dimensions

of the Cardy fields: ½φ� ¼ ðd=2Þ − 2, ½χi� ¼ ðd=2Þ − 1,
½ω� ¼ ðd=2Þ. In contrast, the original replica fields ϕi do
not even have a well-defined scaling dimension [31].
Although not manifest in the Cardy field basis, the Sn
symmetry is still present and in particular not spontane-
ously broken [33]. It will play an important role below.
While RF criticality is often described in terms of special

“zero-temperature fixed points” [35,36], Cardy transform
puts it on the same footing as the more familiar non-
disordered criticality. Using Cardy fields, we will be able to
perform the RG analysis for the RF models borrowing the
standard Wilsonian methodology [37,38].
Leaders and followers.—Let us now turn the interactions

back on, and see how the theory renormalizes. Lagrangian
[Eq. (2)] contains the interaction

P
n
i¼1 VðϕiÞ. This can

be written as a sum of basic Sn singlet interactions

σk ≡P
n
i¼1 ϕ

k
i . In an exhaustive analysis, we will have to

consider further interaction terms respecting the replica
permutation symmetry Sn, since they will be generated by
RG evolution [12]. Examples of such allowed interactions
are products of σk’s as well as interactions containing
derivatives. We will classify Sn singlet interactions in the
original fields of Eq. (2) and then transform them to the
Cardy fields.
The simplest interaction is the mass term σ2 which in

Cardy fields reads 2φωþ χ2i and has classical dimension
d − 2. Continuing at the cubic level, the operator σ3 under
Cardy transform becomes

σ3 ¼ ð3φ2ωþ 3χ2iφÞ þ ðχ3i Þ −
�
3

2
χ2iω

�
þ
�
1

4
ω3

�
; ð5Þ

where different terms have unequal classical dimensions:
ð3d=2Þ − 4 for the first term, while the successive ones sit
1, 2, and 3 units higher. This new effect is generic: any
singlet operator O in Cardy fields can be written as

O ¼ OL þOF1
þOF2

þ � � � ; ð6Þ
where ½OFi

� ¼ ½OL� þ i, i ¼ 1; 2;…. We call the lowest
dimension part OL the “leader" and OFi

“followers.”
In the first part of a Wilsonian RG step, integrating

out a momentum shell and lowering the momentum cutoff
Λ → Λ=b (b > 1), a singlet operator O, if present in the
effective action, renormalizes as a whole, i.e., only through
the change of the overall coefficient: gO → g̃O [39]. This is
guaranteed by Sn symmetry. On the other hand, in the
second part of a RG step, bringing the cutoff back up to its
original value, which rescales the fields φ; χi;ω according
to their classical dimensions, the followers rescale by
different coefficients from the leader, suppressing their
relative effect in the IR (i.e., at large b):

OL þ
X
i

OFi
→ b−½OL�

�
OL þ

X
i

b−iOFi

�
: ð7Þ

Hence, the RG flow in the IR is controlled by the leaders.
This drastically reduces the number of interactions to
consider: only operators in Cardy fields which can be
written as a leader of an Sn singlet interaction are of
interest. The RG relevance or irrelevance of the leader
determines the fate of the whole interaction [40].
Keeping the free massless Lagrangian [Eq. (4)], the mass

term, and the leader parts ðσ2ÞL or ðσ3ÞL of the ϕ3 or ϕ4

interactions, we get the two Lagrangians relevant for the
description of the RF ϕ3 and ϕ4 models:

Lϕ3

L ¼ Lfree þm2ð2φωþ χ2i Þ þ
g
2
ðφ2ωþ χ2iφÞ;

Lϕ4

L ¼ Lfree þm2ð2φωþ χ2i Þ þ
g
12

ð2φ3ωþ 3χ2iφ
2Þ: ð8Þ

The mass term m2 is strongly relevant and should be tuned
to reach the IR fixed point. The upper critical dimension in
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this approach is fixed simply from the marginality of the
leading nonquadratic interaction, which gives the well-
known values cited above: duc ¼ 8 for the ϕ3 and 6 for the
ϕ4 models.
Equation (8) gives the correct effective theory for the two

models close to their upper critical dimension, i.e., for
d ¼ duc − ϵ, ϵ ≪ 1. Indeed, one can check that in this case,
no other Sn singlet interactions exist whose leaders would
be relevant (and, for the ϕ4 case, respecting the extra Z2

symmetry). However, we should keep an open mind about
what may happen for ϵ ¼ Oð1Þ, as some irrelevant inter-
actions may become relevant. This will be investigated
below.
Emergence of SUSY.—It is easy to see that both

Lagrangians [Eq. (8)] have emergent SUSY [30]. Note
that the n − 2 fields χi appear quadratically in the
Lagrangians. The associated partition function is given
by a Gaussian integral which at n → 0 is equal to that of 2
anticommuting scalars ψ ; ψ̄ . So we are allowed to replace
χiχi → 2ψψ̄ . Then both the above theories can be com-
pactly written as

Ssusy ¼
Z

ddxdθdθ̄

�
−
1

2
Φ∂

a
∂aΦþ VðΦÞ

�
; ð9Þ

where VðϕÞ ¼ m2ϕ2 þ ðg=6Þϕ3 for the cubic theory and
VðϕÞ¼m2ϕ2þðλ=4!Þϕ4 for the quartic. Here Φðx; θ; θ̄Þ ¼
φþ θψ̄ þ θ̄ψ þ θθ̄ω is a superfield depending on coordi-
nates x; θ; θ̄ parametrizing the superspace Rdj2 with
OSpðdj2Þ supergroup symmetry (PS supersymmetry),
and ∂

a
∂a is the super-Laplacian (index a takes values

1;…; d; θ; θ̄). In the IR, we get a further enhancement to a
PS superconformal symmetry OSpðdþ 1; 1j2Þ [41]. The
fixed point of this theory is therefore a PS CFT.
We now briefly describe basic properties of PS CFTs and

how they undergo dimensional reduction, as shown in the
Supplemental Material [42]. Local operators in such
theories are classified according to their superconformal
dimension Δ and their OSpðdj2Þ spin l. They are grouped
in superconformal multiplets containing a superprimary
operator Oa

Δl (where a stands for a1a2…), annihilated by
the special superconformal generator Ka, and its super-
descendants such as ∂aOa

Δl and higher superderivatives.
Oa

Δl can be expanded in components which have different
conformal dimensions:

OaðyÞ ¼ Oa
0ðxÞ|fflffl{zfflffl}
Δ

þ θOa
θðxÞ|fflffl{zfflffl}
Δþ1

þ θ̄Oa
θ̄
ðxÞ|fflffl{zfflffl}

Δþ1

þθθ̄Oa
θθ̄
ðxÞ|fflfflffl{zfflfflffl}

Δþ2

: ð10Þ

Dimensional reduction restricts correlators of a PS
CFT to a (d − 2)-dimensional bosonic subspace Md̂ ≡
fy ¼ ðx̂α; 0; 0; 0; 0Þ; x̂ ∈ Rd̂g. In addition, one only con-
siders PS CFT operators invariant under the subgroup
OSpð2j2Þ (super)rotating the directions orthogonal to
Md̂. In general, restricting to a subspace gives a nonlocal

theory. The nontrivial fact is that by restricting the
OSpð2j2Þ-singlet sector of the SUSY theory, we get a
local d̂-dimensional CFT living on Md̂ [29]. The local
conserved CFTd̂ stress tensor appears in this setup as the
T 0 component of the PS CFT superstress tensor T .
The dimensionally reduced CFTd̂ has the global sym-

metry of the original PS CFT: trivial in the ϕ3 case and Z2

for ϕ4. We will naturally assume that this CFTd̂ is nothing
but the d̂-dimensional critical point of the same theory
without disorder [45]: the Wilson-Fisher fixed point for ϕ4

[47] and the Lee-Yang fixed point for ϕ3 [22]. Dimensions
of many operators in these familiar theories being well
known both perturbatively and, sometimes, nonperturba-
tively, we can then use dimensional reduction to infer
dimensions of operators in the PS CFT.
The central question is whether any Sn singlet perturba-

tion, while irrelevant for ϵ ≪ 1, may become relevant for
ϵ ¼ Oð1Þ and destabilize the SUSY IR fixed point. As
discussed above, this may be answered by perturbing the
Lagrangians LL in Eq. (8) by the leader terms of Sn singlet
interactions, and computing their scaling dimensions
(restricting to Z2 singlets for the ϕ4 case). A priori there
are many leaders to consider, which moreover may mix
under RG. Below we will divide them into three classes:
SUSY writable (SW), SUSY null, (SN), and non-SUSY
writable (NSW), with a triangular mixing matrix. Namely
SN operators can generate only SN under RG flow, SW can
generate SW and SN, while NSW can generate all three
classes.
SW leaders.—These are invariant under Oðn − 2Þ acting

on the indices of the χi fields. These operators can be
transformed to the SUSY field bases by the substitution
χi → ψ (hence the name). With abuse of language we will
also refer to the resulting Sp(2)-invariant operators as SW.
In addition, we require that the operator does not vanish
after the substitution (if so it will be classified below as
SUSY null). Most low-lying leaders turn out to be SW. For
example, the leader of any Sn singlet

P
n
i¼1 AðϕiÞ has the

form A0ðφÞωþ 1
2
A00ðφÞχ2i which is SW. This can be written

as the highest component Aθθ̄ðΦÞ of a scalar composite
superfield AðΦÞ. More generally, SW leaders are always in
the highest component of a superfield [48]. They do not
have to be scalars of OSp(dj2), but only singlets of the
subgroup SOðdÞ × Spð2Þ. These are obtained from a high-
est component Oa

θθ̄
by contracting all its a indices with the

Sp(2) metric, i.e., by setting the indices to θ and θ̄ [42].
The OSpðdj2Þ tensor representations of Oa are associ-

ated to the Young tableaux (YT) ðl1;l2; � � �Þ with li boxes
in the ith row. Indices along the rows (columns) are graded
(anti)symmetrized, and all supertraces are removed. Graded
symmetry and antisymmetry respectively mean Oab ¼
ð−1Þ½a�½b�Oba and Oab ¼ −ð−1Þ½a�½b�Oba where ½a� ¼ 0ð1Þ
if a is bosonic (fermionic). These general facts combined
with the above procedure of setting the indices to θ and θ̄
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shows that SW leaders can only be obtained from operators
in representations labeled by YT of the form ð2; 2;…; 2Þ.
SW leaders are thus in correspondence with the superfields

Sθθ̄;J
θθ̄
θθ̄
;Bθθ̄;θθ̄

θθ̄
;…where S is a scalar, J ab a spin two, and

Bab;cd a “box” operator in the YT (2,2) representation
where ða; bÞ and ðc; dÞ are the graded-symmetric pairs.
Representations with a higher number of rows can also
appear in generic d but we do not consider them since they
have large classical dimensions.
The above formal considerations have a neat practical

consequence: dimensions of SW leaders Oθθ̄ can be
obtained by studying the respective operators Ô in the
dimensionally reduced model using ΔOθθ̄

¼ ΔO þ 2 ¼
ΔÔ þ 2 from Eq. (10). From here we see immediately that
SW leaders originating from scalar and spin two PS CFT
operators cannot destabilize the SUSY fixed point. Indeed
in both dimensionally reduced models all scalars (besides
the mass term which we tune to reach the fixed point) are
irrelevant. Similarly all the spin two operators should not
cross the stress tensor and thus are expected to remain
irrelevant in any d [49].
Separate analysis is needed for operators in the box

representation. In the dimensionally reduced models, an
infinite family of such operators can be written in terms of
d̂-dimensional scalar field ϕ̂ as

B̂ðkÞ
αβ;γδ ≡ ϕ̂k−3

�
ϕ̂;αβϕ̂;γδϕ̂ −

2d̂

d̂ − 2
ϕ̂;αϕ̂;βϕ̂;γδ

�
Y
; ð11Þ

with k ≥ 3. Greek letters denoteRd̂ indices, and Y indicates
the box YT symmetrization, the two symmetric rows being
αβ and γδ. These are the lowest dimensional operators
made of k fields in such representation.
We computed their perturbative one-loop dimensions for

the ϕ3 case [46], following the standard ϵ-expansion
methodology [37,38], while the ϕ4 case was considered
previously in Ref. [50]. The results (classical dimension
plus one-loop correction) are

ΔBðkÞ
θθ̄

¼
8<
:

�
2kþ 6 − k

2
ϵ
�
cl
þ 2k2−5k−2

6
ϵ ðϕ3Þ;�

kþ 2 − k
2
ϵ
�
cl
þ ðk−3Þð3kþ2Þ

18
ϵ ðϕ4Þ:

ð12Þ

Importantly, all anomalous dimensions are positive
(excluding the k ¼ 3 ϕ4 case which, as all odd k for ϕ4,
is unimportant since it does not respect Z2 symmetry).
SN leaders.—These are singlets underOðn − 2Þ (like the

SW operators) and satisfy the property of vanishing under
the χ → ψ map by the Grassmann nature of ψ . A typical
example is ðχ2i Þ2 → ðψψ̄Þ2 ¼ 0. These operators have
restrictive mixing properties and can only generate oper-
ators of the same class under RG. We identified an infinite
class of Sn singlets [42],

N k ¼
2

k − 3

�
σ2σk−2
k − 2

−
2σ1σk−1
k − 1

�
; ð13Þ

for k¼4;5;6;…, which have SN leaders ðN kÞL¼φk−4ðχ2i Þ2.
The k ¼ 4 operator is the lowest dimensional SN leader
overall, while ðN kÞL is the lowest dimensional SN leader
made of k fields.
Unlike for SW leaders, we cannot use SUSY theory and

dimensional reduction to infer the scaling dimensions of
SN operators (since they vanish identically in SUSY
fields). We compute them directly from action [Eq. (8)].
Our Cardy field approach makes these computations
methodologically straightforward, being analogous to the
standard ϵ expansion [37,38]. We thus computed the
leading anomalous dimension of operators [Eq. (13)].
The resulting scaling dimensions (classical plus one-loop)
are given by

ΔðN kÞL ¼
8<
:

�
2ðkþ 2Þ − ϵ

2
k
�
cl
þ 6k2−7k−48

18
ϵ ðϕ3Þ;�

kþ 4 − ϵ
2
k
�
cl
þ ðk−4Þðkþ3Þ

6
ϵ ðϕ4Þ:

ð14Þ

The one-loop correction is positive except for the k ¼ 4, ϕ4

case when it vanishes. Then, the first nonzero correction
appears at two loops, and it is negative [40]:

ΔðN 4ÞL ¼ ð8 − 2ϵÞcl −
8

27
ϵ2 ðϕ4Þ: ð15Þ

NSW leaders.—These operators are singlets under the
Sn−1 that permutes the fields χi, but not under Oðn − 2Þ,
and therefore they cannot be mapped to ψ ; ψ̄ fields. A
typical example would be any leader involving

P
n
i¼2 χ

3
i . In

the RG flow, leader perturbations belonging to this class
can generate perturbations from the other two classes, while
the opposite mixing is forbidden by SUSY.
We investigated two infinite families of Sn singlets

having NSW leaders, as shown in the Supplemental
Material [42]. The first family, first discussed by
Feldman [13] and in Ref. [40], is given by

F k ¼
Xn
i;j¼1

ðϕi − ϕjÞk ¼
Xk−1
l¼1

ð−1Þl
�
k
l

�
σlσk−l; ð16Þ

with k ¼ 6; 8; 10;… [51]. They give rise to NSW leaders
made only of χ fields, of the form

ðF kÞL ¼
Xk−2
l¼2

ð−1Þl
�
k
l

�
ðχliÞðχk−lj Þ: ð17Þ

The first leader of this family, ðF 6ÞL, is the lowest
dimensional NSW leader overall.
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The second family consists of Sn singlets given by

Gk ≡ σ3σk−3
3ðk − 5Þ þ

σ1σk−1
k − 1

−
ðk − 4Þσ2σk−2
ðk − 5Þðk − 2Þ ; ð18Þ

for k ¼ 6; 7; 8;…. These have NSW leaders

ðGkÞL ¼ ðk − 4Þðk − 3Þ
36

φk−6½2ðχ3i Þ2 − 3ðχ2i Þðχ4jÞ�: ð19Þ

The two families start from the same operator (G6 ∝ F 6),
but the higher operators are different. In fact ðGkÞL is the
lowest NSW leader made of k fields and, in particular, sits
lower than ðF kÞL for k > 6.
Like for the SN class, we computed NSW scaling

dimensions by the ϵ-expansion methodology adapted to
action [Eq. (8)]. Starting with the F k family, the scaling
dimension (classical plus the leading correction) is given by

ΔðF kÞL ¼
8<
:

�
3k − k

2
ϵ
�
cl
þ 2k2−3k

18
ϵ ðϕ3Þ;�

2k − k
2
ϵ
�
cl
− kð3k−4Þ

108
ϵ2 ðϕ4Þ:

ð20Þ

Notably, the leading anomalous dimension is one loop and
positive in the ϕ3 case [46] while it is two loop and negative
for ϕ4 [13,40].
Considering next the Gk family, we obtained

ΔðGkÞL ¼
8<
:

�
2ðkþ 3Þ − k

2
ϵ
�
cl
þ 6k2−7k−120

18
ϵ ðϕ3Þ�

kþ 6 − k
2
ϵ
�
cl
þ ðk−6Þðkþ5Þ

6
ϵ: ðϕ4Þ

ð21Þ

The one-loop correction is therefore always positive, except
in the k ¼ 6, ϕ4 case when it vanishes. In the latter case,
using G6 ∝ F 6 and Eq. (20), we see that the leading,
negative correction appears at two loops.
Does SUSY emerge at ϵ ¼ Oð1Þ?—The analysis leading

to SUSY was based on the effective Lagrangians [Eq. (8)].
It would be invalidated if a new relevant leader interaction
were found in the IR. Allowed by symmetry, such a
growing perturbation will be generated by the RG, desta-
bilizing the flow and leading it away from the SUSY fixed
point. Let us see if this scenario is realized.
Above we discussed several infinite families of leader

interactions from three different classes (SW, SN, NSW).
We will now focus on the lowest dimensional operators for
each class. We expect them to be most important to decide
on the stability of the SUSY fixed point. First of all,
ϵ-expansion computations of lowest-dimensional operators
should be more reliable than for higher-dimensional
ones [52]. Second, we expect crossing of operator dimen-
sions (within the same mixing class) to be avoided
nonperturbatively.

With this in mind we find that the SUSY IR fixed point
of the RF ϕ3 theory should always be stable, since the

lowest leader perturbations Bð3Þ
θθ̄
, N 4, F 6 never become

relevant. To see this we take their one-loop dimensions
given in Eqs. (12), (14), and (20) and use these expressions
in the full range of interest 2 ≤ d < 8 [54].
However, the same argument for the ϕ4 case reaches a

different conclusion [40]. While Bð4Þ
θθ̄

remains irrelevant
[55], both ðN 4ÞL and ðF 6ÞL become relevant at some
critical dimension dc between four and five, namely
ΔðN 4ÞL ¼ d at d ¼ dc ≈ 4.6 while ΔðF 6ÞL ¼ d when
dc ≈ 4.2. The precise value of dc, and which of the two
operators crosses marginality first, should be taken with a
grain of salt coming from a two-loop computation. We may
estimate the uncertainty replacing the expressions in
Eqs. (15) and (20) by their Padé½1;1� rational approximants.
We then find that ðN 4ÞL crosses marginality at dc ≈ 4.7,
while ðF 6ÞL crosses it at dc ≈ 4.5.
NSW interaction ðF 6ÞL clearly breaks SUSY. Operator

ðN 4ÞL is also potentially SUSY breaking, by affecting
NSW coupling evolution (while being SN it does not
directly affect SW sector). We thus conclude that SUSY
will be present in the RF ϕ4 model for dc < d < 6, while it
will be lost for d < dc [56].
Remarkably, our findings exactly match the expectations

from numerical studies mentioned at the beginning, for both
universality classes. It is encouraging that already the leading
order ϵ-expansion results lead to this agreement. In the future,
it would be interesting to determine our dc more accurately.
This can be done systematically, increasing the perturbative
order and usingBorel resummation techniques, as is standard
for the usual Wilson-Fisher fixed point [38,57–59].
Finally, we wish to compare our results to functional

renormalization group studies of the RF ϕ4 model, which
also predict the loss of SUSY for d < dFRGc ≈ 5.1 [60].
While their dc is similar, their mechanism is quite different
from ours, being attributed to fixed point annihilation [61],
so that below dc the SUSY fixed point does not exist. On
the contrary, our SUSY fixed point exists for any d, being
simply RG unstable for d < dc. If so, one should be able to
detect SUSY in lattice simulations for d ¼ 4, by performing
additional tuning [62]. This would be a decisive confirma-
tion for our scenario.
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