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That disorder can induce nontrivial topology is a surprising discovery in topological physics. As a
typical example, Chern topological Anderson insulators (TAIs) have been realized in photonic systems,
where the topological phases exist without symmetry protection. In this Letter, by taking transverse
magnetic and transverse electric polarizations as pseudospin degrees of freedom, we theoretically propose a
scheme to realize disorder-induced symmetry-protected topological phase transitions in two-dimensional
photonic crystals with a combined time-reversal, mirror, and duality symmetry T f ¼ T MzD. In particular,
we demonstrate that the disorder-induced symmetry-protected topological phase persists even without
pseudospin conservation, thereby realizing a photonic Z2 TAI, in contrast to a Z-classified quantum spin
Hall (QSH) TAI with decoupled spins. By formulating a new scattering approach, we show that the
topology of both the QSH andZ2 TAIs can be manifested by the accumulated spin rotations of the reflected
waves from the photonic crystals. Using a transmission structure, we also illustrate the trivialization of a
disordered QSH phase with an even integer topological index caused by spin coupling.
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Introduction.—As the photonic counterparts of the elec-
tronic topological insulators [1–7], topological photonic
crystals (PCs) can support gapless edge states that are
backscattering-immune against weak disorders [8–13].
However, if the disorders are sufficiently strong, themobility
band gap closes due to the Anderson localization, making
the system topologically trivial [14–21]. Interestingly,
recent studies report a reverse transition: disorders can drive
PCs to change from a topologically trivial phase to a
nontrivial phase. The systems in these disorder-induced
topological phases are called topological Anderson insula-
tors (TAIs) [22–35].
While the photonic TAI systems are mainly limited to

Chern-type [31,32], the original discovery of TAIs stemmed
from investigating disordered quantum spin Hall (QSH)
systems with fermionic time-reversal (FTR) symmetry [22].
The initial idea of QSH effect is to build a system with two
oppositely spin-polarized quantum Hall copies related by
FTR symmetry [3,5]. However, Kane and Mele pointed out
that even without sz spin conservation, the FTR symmetry
can protect nontrivial Z2 topological phase [4], which is
different from the Z classified QSH phases with conserved
spin current [36–38]. This surprising discovery gave rise to
the notion of topological insulators and triggered the
topological revolution in physics. In photonics, although
QSH-like effects in ordered PCs had been widely studied in
recent years [49–66], almost all these works are based on
finding two decoupled pseudospin sectors, and the subtle but
important difference between the QSH andZ2 topology had
rarely been explored, aside from the discussion of a similar
issue in the Floquet system [66]. Moreover, the study of
disorder-induced TAI phase transition in QSH and Z2

systems also remains absent in photonics. The aim of this
work is to fill these gaps.
In this Letter, we theoretically and computationally

design a PC composed of pseudo-FTR symmetric media.
By introducing geometric randomness, we observe the
topological transitions from a trivial phase to QSH (with
z-mirror symmetry) and Z2 (without z-mirror symmetry)
TAI phases, which are demonstrated by the bulk trans-
mission spectra and the helical edge states. To characterize
the topology quantitatively, we connect the disordered PCs
to a waveguide lead where we detect the pseudospin
reflection from the PCs [67–78] and find that the windings
of the reflected spins can characterize both the bulkZ andZ2

topological indices. In addition, we exhibit the difference
between the QSH andZ2 TAI phases via boundary transport
effects, which was rarely addressed in previous works.
T f-symmetric photonic crystals.—Surveying the litera-

ture of photonic QSH effects in 2D PCs, the underlying
principle of nearly all schemes that are based on the special
property of optical materials [51–63] can be traced to the
hidden antiunitary symmetry T f ¼ T MzD, which com-
bines time reversal T , mirror reflection Mz∶ðx; y; zÞ →
ðx; y;−zÞ, and electromagnetic duality transformation
D∶ðE;HÞ → ðH;−EÞ [60]. Since T 2

f ¼ −1, T f serves
as a pseudo-FTR operator for photons. In the basis of the
wave function Ψ ¼ ðE;HÞ⊺, the operator takes the matrix
representationT f ¼ −iσy ⊗ mzK, where σi (i ¼ x, y, z) de-
note the Pauli matrices, mz ¼ diagð1; 1;−1Þ, and K
denotes complex conjugate. The constitutive tensors
of a T f-invariant photonic medium should respect

ε
↔
=ε0 ¼ ð ε↔T

g†
g
εz
Þ, μ↔=μ0 ¼ ð ε

↔�
T−g⊺
−g�
εz
Þ, where ε0 and μ0 are the

PHYSICAL REVIEW LETTERS 129, 043902 (2022)

0031-9007=22=129(4)=043902(7) 043902-1 © 2022 American Physical Society

https://orcid.org/0000-0003-2618-4509
https://orcid.org/0000-0002-3567-0499
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.129.043902&domain=pdf&date_stamp=2022-07-19
https://doi.org/10.1103/PhysRevLett.129.043902
https://doi.org/10.1103/PhysRevLett.129.043902
https://doi.org/10.1103/PhysRevLett.129.043902
https://doi.org/10.1103/PhysRevLett.129.043902


vacuum permittivity and permeability. Hereinafter, we let

ε
↔

T ¼ ð 1
−iβ

iβ
1
Þ so that ε

↔
and μ

↔
are gyrotropized in opposite

manners [63], andwe use g ¼ ðκ; κÞ⊺ to control the coupling
between transverse electric (TE) and transverse magnetic
(TM) modes. We stress that the use of gyrotropic media is
only for computational convenience. Indeed, our theory is
applicable to all T f-invariant systems, and the photonic Z2

TAIs can also be realized by reciprocalmaterials via aSUð2Þ
gauge transformation [38,79].
Figure 1(a) shows the unit cell of an ordered T f-

invariant PC. The central gyrotropic cylinder (green) with
β ¼ 0.7, εz ¼ 25, κ ¼ 0 breaks the T symmetry, while the
off-center reciprocal cylinder (blue) with β ¼ 0, εz ¼ 5,
κ ¼ 0 breaks the spatial inversion (P) symmetry of the PC.

If the background medium (light blue) has ε
↔
=ε0 ¼

μ
↔
=μ0 ¼ 1, κ ¼ 0, the PC has Mz symmetry, and therefore

the eigenstates can always be selected as TM (Mz odd) or
TE (Mz even) polarized [see Fig. 1(d)]. In analogy to spin-
1=2 fermions, we define the pseudospin of electromagnetic
fields using the two-component spinor jψi ¼ ðEz; η0HzÞ⊺
(η0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
μ0=ε0

p
is the vacuum impedance) as

s⃗≡ hψ jσ⃗jψi=hψ jψi; ð1Þ

with σ⃗ ¼ fσx; σy; σzg. Then, the TM and TE modes serve
as pseudospin up and down states, respectively. The 2D
Maxwell’s equations withMz symmetry are invariant under
a Uð1Þ pseudospin rotation Us ¼ expðiϑσz=2Þ with an
arbitrary angle ϑ [38], which guarantees the conservation of
the sz spin component [see Fig. 1(f)]. The symmetry-
protected topological (SPT) phases with T f and Mz

symmetries are Z classified [36] by a QSH-Chern number
Cs [38] [labeled on the bands in Fig. 1(d)]. The sum of Cs
below the gap concerned (light blue) is 0, indicating the gap
is topologically trivial. This is because the P-breaking
effect due to the off-center cylinder beats the T -breaking
effect induced by the central gyrotropic cylinder in each
spin sector [38].
Next, we break Mz symmetry of the PC via adding the

coupling term g ¼ ðκ; κÞ⊺ into the background medium. As

shown in Fig. 1(e), the topologically trivial band gap
remains open at κ ¼ 0.06 [38], but the pseudospins of
each Bloch mode are no longer uniformly polarized [see
Fig. 1(f)]. Though the TM-TE coupling makes the QSH
phases ill-defined [80], T f symmetry itself can support a
nontrivial SPT phase characterized by the Kane-Mele Z2

index ν [4], which is connected with the QSH-Chern
number by ν ¼ Cs mod 2 in the weak coupling limit.
Disorder-induced topological phase transitions.—As

shown in Figs. 1(b) and 1(c), we introduce disorders into
the PCs with κ ¼ 0 by rotating the off-center cylinder
around the center one through a random angle θ (uniformly
distributed in the interval ½−θd=2; θd=2�) in each unit cell.
In this way, we build disordered PC samples whose top and
bottom boundaries are glued together continuously, and
plane wave ports are imposed on the left and right
boundaries. In the presence of Mz symmetry, one only
need to consider the TM modes, since the TE modes
correspond bijectively to the TM ones by T f symmetry. We
simulate the TM bulk transmission between the two
ports over N random samples using COMSOL, and calculate
the typical (geometric mean) transmittance hTityp ¼
exp½PN

n¼1 ln tn=N� as a function of the disorder strength
θd, as shown in Fig. 2(a), where tn represents the TM
transmittance of the nth sample. When disorder is weak, the
transmission gap (dark region) corresponds to the topo-
logically trivial band gap of the ordered PC in Fig. 1(d). As
we increase θd, the mobility gap closes and reopens at
around θd ¼ 60°, indicating the PC ensemble transitions
into a QSH TAI phase, which can be verified by calculating
the local QSH-Chern number [30,38,81]. The QSH TAI is
nothing but two copies of Chern TAIs (TE and TM) related
by T f symmetry. Intuitively, the emergence of TAI phase in
each spin sector occurs because strengthening the disorders
can smooth out the P violations in different unit cells
and makes the T -breaking effect comparatively more
dominant [38].
Turning now to the spin-coupled case (κ ¼ 0.06),we let an

obliquely polarized plane wave with E ∝ ð0; 1; 1Þ incident
from the left port of the disordered PCs and collect

(d)(a)

(b)

(e)(c) (f)

FIG. 1. (a) Unit cell of an ordered hexagonal PC with a lattice constant a. Parameters: rc ¼ 0.1a, d ¼ 0.37a, l ¼ a=
ffiffiffi
3

p
. (b) One

typical cell of the (c) disordered PC with the off-center cylinder rotated by a random angle θ. (d),(e) Band structures of two ordered PCs
with (d) Mz symmetry (κ ¼ 0) and without (e) Mz symmetry (κ ¼ 0.06). (f) The distributions of pseudospins s⃗ (arrows) and intensity
hψ jψi (grayscale color map) of four eigenstates [labeled by the colored dots in (d) and (e)] with conserved and nonconserved
pseudospins.
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the total transmittance hTityp ¼ exp½PN
n¼1 lnðtn þ t0nÞ=N�

of both TE (tn) and TM (t0n) polarizations at the right port.
The phase diagram in Fig. 2(b) also shows the process of
mobility gap closing and reopening as the evidence of the
disorder-induced transition from the trivial phase to the
nontrivial Z2 TAI phase.
To demonstrate the two gapped phases after disorder-

induced transitions indeed have nontrivial topology, we
attempt to observe helical edge states on the boundaries of
two disordered PCs in these phases with [Fig. 2(c)] and
without [Fig. 2(d)]Mz symmetry [labeled by orange stars in
Figs. 2(a) and 2(b)]. As shown in Figs. 2(c) and 2(d), a
point source (green star) with superposed electric and
magnetic monopoles is placed on the right boundary of
each PC encased by a T f-symmetric insulation cladding

with ε
↔
=ε0 ¼ μ

↔
=μ0 ¼ diagð1; 1;−1Þ. For the Mz-symmet-

ric case [Fig. 2(c)], we observe that a purely spin-up surface
wave (blue arrows) is emitted from the source and
propagates clockwise along the boundaries, while a purely
spin-down wave (red arrows) propagates counterclockwise
along the boundaries due to T f symmetry. This photonic
QSH effect undoubtedly confirms the disorder-induced
mobility gap is a TAI. In the case of breakingMz symmetry,
Fig. 2(d) shows that T f symmetry can sustain the two
counterpropagating surfaces waves; however, their spins
are no longer uniformly polarized. Indeed, the whole
disorder-induced phase permits bidirectional gapless boun-
dary transportation, demonstrating that T f-invariant TAIs
are compatible with spin coupling, which will be explained
in Fig. 4(b).

Scattering approach for classifying disordered
topological phases.—Inspired by the scattering approaches
to retrieving the bulk topology [67–78], we propose a
new spin-reflection method for calculating the topo-
logical invariants. As shown in Fig. 3(a), we connect a
T f-symmetric dual-mode waveguide lead to the left end of
the PC, and impose a twisted boundary condition with a
twist angle ϕy to the two edges along the x direction of the
PC [68,69] (see details and a possible experimental
realization in the Supplemental Material (SM) [38]).
Considering the scattering process of an incident field

ψ inðϕy;ωÞ at frequency ω impinging upon the PC in the
lead, the reflected spinor ψ rðϕy;ωÞ is related to the inci-
dent spinor by a reflection matrix R: ψ rðϕy;ωÞ ¼
Rðϕy;ωÞψ inðϕy;ωÞ. Within the mobility gap, Rðϕy;ωÞ is
a Uð2Þ matrix for the general PCs without Mz symmetry,
and can be expressed as R ¼ eiq exp ½iαn⃗ · σ⃗� (n⃗ is a unit
vector), whose eigenvalues r1;2 ¼ eiðq�αÞ represent two
eigen reflection coefficients. Thanks to T f symmetry,
the reflection matrix satisfies [38]

σyRðϕy;ωÞ�σy ¼ Rð−ϕy;ωÞ†; ð2Þ

which gives rise to the Kramers’ degeneracy of the
two eigen reflection phases φ1;2 ¼ argðr1;2Þ ¼ q� α at
T f-invariant points (ϕ0 ¼ 0; π), implying Rðϕ0Þ ¼ eiqσ0 ∈
Uð1Þ. As a consequence, the loops of the T f-symmetric
reflection matrices over a cycle of ϕy are topologically
classified by the relative homotopy group [38,82]

π1ðUð2Þ; Uð1ÞÞ ¼ π1ðSOð3ÞÞ ¼ Z2: ð3Þ

Akin to the Wilson loop approach [83], the two classes of
RðϕyÞ can be visually distinguished by the trivial and
nontrivial connectivities of the concatenated trajectories of
the two eigen reflection phases φ1;2 in a half-period
(ϕy ∈ ½0; π�) [see the two examples in Fig. 3(b)].
Choosing a smooth gauge of αðϕyÞ, the Z2 index can also
be calculated by the winding number of the relative phase
Θ ¼ φ2 − φ1 ¼ −2α over a half-period:

ν̃ ¼
�
1

2π

Z
π

0

dϕy
∂ðφ2 − φ1Þ

∂ϕy

�
mod 2 ¼ 0 or 1: ð4Þ

From the perspective of spin, after reflection from the
disordered PC, the spin s⃗r of reflected wave rotates from the
initial orientation s⃗in about the axis n⃗ by the angle
Θ ¼ −2α, as depicted in the inset of Fig. 3(a),

s⃗r ¼ GðΘ; n⃗Þs⃗in ¼ exp½Θn⃗ · L⃗�s⃗in; ð5Þ

where GðΘ; n⃗Þ ∈ SOð3Þ is the spin-reflection matrix with
L⃗ denoting the soð3Þ generators. It is intriguing that
the spin rotation angle is precisely the phase difference

(b)(a)

(d)

(c) (d)

(c)

FIG. 2. Typical bulk transmittance averaged over N ¼ 10
samples (size: Lx × Ly ¼ 30a × 30l) for (a) spin-decoupled
(κ ¼ 0) and (b) coupled cases (κ ¼ 0.06). (c),(d) Helical edge
states in (c) a QSH TAI PC and in (d) aZ2 TAI PC [corresponding
to the orange stars at ðθd; fÞ ¼ ð220°; 0.59c=aÞ in (a),(b)].
Arrows’ color and transparency represent the sz component of
pseudospins and the field intensity, respectively.
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Θ ¼ φ2 − φ1 of the two eigen reflection coefficients.
Therefore, although the rotation axis n⃗ðϕyÞ is generally
unfixed caused by TM-TE coupling, the accumulated spin
rotation angle ΔΘ during a half cycle of ϕy remains
quantized but can only take two stable values 0 and 2π,
which reveals the physical meaning of the homotopy group
π1ðSOð3ÞÞ ¼ Z2 in Eq. (3) [38]. We also established the
correspondence of the edge states and the relative phase and
hence proved that the bulk topology is indeed equivalent to
the Z2 classified accumulated spin rotation of the reflected
waves [38].
Figures 3(c) and 3(d) plot jDetðRÞj and the relative phase

Θ for spin-coupled PCs (κ ¼ 0.06) inside the trivial and
TAI phases, respectively. By T f symmetry, ΘðϕyÞ is
symmetric about T f-invariant points at which it reduces
to zero due to Kramers’ degeneracy. Inside the mobility
gaps (jDetðRÞj ¼ 1) with weak [Fig. 3(c)] and strong
[Fig. 3(d)] disorders, the winding numbers of ΘðϕyÞ over
a half-period are fixed to 0 and 1, respectively. This result
corroborates that the spin-coupled TAI phase in Fig. 2(b)
possesses a well-defined Z2 topology.
For the PCs with Mz symmetry, due to the sz spin

conservation, the rotation axis n⃗ between the reflected and
incident spins is fixed along sz. As such, the spin rotation
matrix reduces to G ¼ exp ½ΘLz� ∈ SOð2Þ. Thus, after ϕy

evolves over a half-period, the reflected spin will rotate
about the sz axis an integer number of times Cs ∈
π1ðSOð2ÞÞ ¼ Z, offering a spin rotation route to extracting
the QSH-Chern numbers of the spin-decoupled TAI phases
(see the numerical results in SM [38]). Note that our
method does not require ensemble averaging, making it
more efficient for computing topological indices of dis-
ordered systems than other approaches [84–86].
Distinction between QSH and Z2 TAIs.—According to

the above discussions, the T f-symmetric PCs with
and without Mz symmetry have different topological

classifications, i.e., Z versus Z2. Now we examine this
difference via edge transport effects.
We consider a strongly disordered PC whose bulk

mobility gap shown in Fig. 4(a) is in the TAI phase with
Cs ¼ 1 at κ ¼ 0. Turning on the spin coupling (κ ≠ 0),
the gap remains nontrivial with the Z2 index ν ¼ 1.
The persistence of nontrivial topology is manifested by
the gapless transmittance spectrum in Fig. 4(b), where the
mobility gap (region between the two red dashed curves) is
filled up by the gapless edge transport. For comparison, we
build a domain wall between this PC (β > 0) and its time-
reversal copy (β < 0) [see Fig. 4(c)]. At κ ¼ 0, the two
domains have opposite QSH-Chern numbersCs ¼ �1. The
nontrivial domain wall index ΔCs ¼ 2 protects gapless
interface transport at κ ¼ 0. However, the emergence of
spin coupling makes the two domains fall into the same Z2

class of ν ¼ 1, and immediately reduces the domain wall

Trival Nontrival(b) (c) (d)(a)

Trival
Nontrival

Lead

FIG. 3. (a) Schematic for retrieving the Z2 index from the spin reflection inside the waveguide lead connected to the disordered PC
(size: 18a × 15l) with a twisted boundary condition eiϕy . Inset (Bloch sphere): the rotation between the reflected and incident spins.
(b) Eigen reflection phases in the trivial (fa=c ¼ 0.572) and nontrivial (fa=c ¼ 0.583) gaps. The total reflection magnitude jDetðRÞj
and the spin rotation angle Θ in the (c) trivial (θd ¼ 20°) and (d) nontrivial (θd ¼ 220°) gaps. The white dashed lines mark the
frequencies of the eigen reflection phases in (b).

PC

1

0

Transm
ittance

Gapped bulk Gapless boundary Gapped interface

0β >

0β <

0.59

0.61

0.57

fa
/c

0       0.03     0.06    0.09
Coupling strength κ

(a) (b) (c)

P
or

t

P
or

t

0       0.03     0.06    0.09
Coupling strength κ

0       0.03     0.06    0.09
Coupling strength κ

FIG. 4. Typical transmittance spectra (averaged over 15
samples) for the disordered PCs (θd ¼ 150°) with different
transverse boundary conditions. (a) PC with continuously glued
top and bottom boundaries. (b) PC sandwiched by T f-symmetric
insulation cladding layers (orange). (c) Two PCs consisting of
oppositely gyrotropized center cylinders (β ¼ �0.7, respectively)
joined at two domain walls (center interface and top-bottom
boundary). The red dashed curves denote the bulk mobility edges.
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charge fromΔCs ¼ 2 toΔν ¼ 0. Consequently, the gapless
transmission at κ ¼ 0 opens a mobility gap as κ ≠ 0,
confirming that the domain wall topology is trivialized
by the spin coupling.
Conclusion.—We proposed a scheme for realizing pho-

tonic QSH and Z2 TAIs supporting gapless helical edge
transport in 2D disordered PCs with T MzD symmetry,
where geometric disorder induces the transition from the
trivial phase to the topological phases. Through observing
the gapless to gapped transition of interface transport, we
also verified that the absence or presence of the spin
coupling changes the topological classification of the
TAIs. Our system offers a prototypical platform to study
photonic SPT phases with strong disorders. Furthermore,
we developed a new approach to retrieve the QSH-Chern
and Z2 indices of the disordered PCs from spin reflection,
which is not only remarkably efficient for system without
periodicity but also endows the topological invariants with
the explicit physical meaning through the quantized spin
rotation angles of the reflected waves during a half-period
variation of the PCs’ twisted boundaries. This approach is
applicable to any systems with (pseudo)spins and would
also be used to characterizing the Z2 charged 3D Dirac
points [87–89].
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