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We report microscopic many-body calculations indicating that rotational bands based on nuclear scissors
vibrations exhibit systematic splitting between neighboring spin states (ΔI ¼ 2 bifurcation) in which the
magnitude of the moment of inertia oscillates between states having even and odd spins. We show that this
unexpected result is caused by self-organization of the deformed proton and neutron bodies in the scissors
motion, which is further amplified by theKπ ¼ 1þ two-quasiparticle configurations near the scissors states.
We propose that the puzzling excited state found above the 1þ scissors state in 156Gd [Phys. Rev. Lett. 118,
212502 (2017)] is the first evidence of this effect, and predict that bifurcation may generally appear in all
other scissors rotational bands of deformed nuclei, and possibly in other systems exhibiting collective
scissors vibrations.
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In quantum many-body systems collective motion often
appears as the spontaneous emergence of ordered motion
for a large number of self-organized identical particles [1].
The scissors mode in deformed atomic nuclei depicts the
collective vibration of the proton and neutron systems with
respect to each other. This vibration, first predicted in the
1970s [2], may be classified, together with the well-known
β and γ vibrations in nuclei [3], as one of the lowest
collective excitations of the ground state [4]. Since the
pioneering experiment for 156Gd in 1984 [5], the Iπ ¼ 1þ
scissors-mode state has been investigated experimentally
[6]. This research has also triggered considerable theoreti-
cal interest in nuclear physics [7–18]. Extending the idea
that the superfluidity of neutron and proton “clouds”
oscillate in deformed nuclei, similar collective excitations
were first predicted [19] and then observed [20] in Bose-
Einstein condensation. The scissors-mode state was also
predicted in other many-body systems including metallic
clusters [21], quantum dots [22], superfluid Fermi gases
[23], and anisotropic crystals [24].
Measurement of the magnetic dipole (M1) response for

nuclei with even numbers of neutrons and protons allowed
some general features of the scissors-mode vibration to be
obtained from light to very heavy mass regions. For the
well-studied rare earth region, for example, the excitation
energies of the scissors-mode states in the N ¼ 82–126
major-shell nuclei are found to be remarkably constant
(∼3 MeV) [25]. Moreover, the total BðM1Þ strength of the
scissors mode is found to be proportional to the square of
the deformation parameter [26], which is an important
indicator of collective motion in nuclei.
Surprisingly, almost nothing is known about rotational

behavior of the scissors-mode states (except the puzzling

result reported by the Darmstadt group [27] that we shall
discuss below). In a deformed nucleus executing scissors-
like motion, the neutron and proton distributions in the
deformed nucleus are thought to conduct small-angle
vibrations with respect to each other while they are
rotating. Collective rotation coupled with the scissors
vibration is conceptually complicated. It is expected that
such a system would break all known symmetries with
regard to rotation, even though the potentials for neu-
trons and protons are considered to be separately axial
symmetric.
In a microscopic description of the scissors mode, two of

us (Y. S. and M. G.) and collaborators, made a prediction
for rotational bands built on multiphonon scissors modes in
deformed nuclei [10]. The theoretical method for that study
was an extension of the projected shell model (PSM) [28].
In order to describe the relative motion between deformed
neutron and proton fields in a microscopic way, instead of a
single BCS vacuum the angular momentum projection was
performed for separate neutron and proton deformed BCS
vacua. The (angular-momentum) projected neutron and
proton states were then coupled through the diagonalization
of a pairing plus quadrupole interaction in this basis. It was
shown that the procedure gives the usual ground-state
rotational band corresponding to a strongly coupled BCS
condensate of neutrons and protons, but also leads to a
set of excited states arising from a more complex vacuum
that incorporates motions in the relative orientation of the
neutron and proton fields (For the theoretical framework of
Ref. [10] as well as its further improvement, see Ref. [29]).
Specifically, a rotational band on top of the Iπ ¼ 1þ

state at about 3 MeV was predicted [10] and further
discussed [12], but had not been observed until the recent
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experiment by the Darmstadt group. In Ref. [27], Beck
et al. reported their discovery of the 2þ state above the 1þ

scissors band head in 156Gd. While this is the first candidate
observation of an excited state of the scissors mode state, its
excitation energy is a puzzle. The measured energy of the
new 2þ state lies only 19 keVabove the known 1þ scissors
state. If indeed the 2þ state seen at 3.089 MeVexcitation is
the first rotational excitation of the 1þ scissors state at
3.070 MeV in 156Gd, two possibilities have to be consi-
dered. The scissors mode either has a rotational moment of
inertia that is considerably larger than the rigid-body value
anticipated for 156Gd, or the scissors rotational band must
exhibit a significant energy splitting, assuming the average
moment of inertia of the scissors-mode band is similar to
the one of the ground band. An attempt to reproduce the
experimental data by using large decoupling-parameter
values under various assumptions failed [35].
We show in this Letter that the unusually low excitation

energy of the 2þ state in 156Gd [27] is a consequence of
energy-level staggering in the scissors rotational band. We
further point out that this may be a new type of staggering
that is collective in nature, appearing specifically for
systems executing scissorslike motion. Our discussion
leads to a speculation that all scissors rotational bands in
deformed nuclei should exhibit a ΔI ¼ 2 bifurcation in
band energies and electromagnetic transition strengths.
Thus we propose that bifurcation is a characteristic feature
of a scissors-mode rotational band.
Our theoretical discussion is based on an extended

version of the projected shell model [28] (for details of
the model extension, see [29]), which employs a well-
established Hamiltonian for nuclear structure studies in the
form of a pairing plus quadrupole force [36,37] with
inclusion of a quadrupole-pairing force [38]. It is written
in the isospin formalism with three parts: Ĥ ¼ Ĥνþ
Ĥπ þ Ĥνπ, where Hτ (τ ¼ ν, π) is

Ĥτ ¼ Ĥ0
τ −

χττ
2

X

μ

Q̂†μ
τ Q̂μ

τ −Gτ
MP̂

†
τ P̂τ −Gτ

Q

X

μ

P̂†μ
τ P̂μ

τ ; ð1Þ

denoting the neutron and proton Hamiltonian. The neutron-
proton interaction Hνπ is of quadrupole-quadrupole form

Ĥνπ ¼ −χνπ
X

μ

Q̂†μ
ν Q̂μ

π: ð2Þ

It is important to note that we place no constraint on the
relative orientation of the neutron and proton bodies and
their rotational direction. The effective moment of inertia of
the whole system is not fixed in our model, but is
determined by the self-organization implicit in solving
the eigenvalue equation.
The quasiparticle vacua are defined as j0i ¼ j0νij0πi,

which are obtained by the BCS calculations for deformed
Nilsson single-particle states separately for neutrons and

protons with an appropriate deformation. The basis for the
diagonalization is obtained by angular momentum projec-
tion [28] onto the vacuum:

jIi ¼ N IP̂Ij0i≡N I½P̂Iν j0νi ⊗ P̂Iπ j0πi�I ≡N I½Iν ⊗ Iπ�I;
ð3Þ

where P̂I is the angular momentum projection operator [39]
and N I the normalization constant. For details of the
angular-momentum coupling calculation, see [29].
Diagonalization of the Hamiltonian in the basis (3) leads

naturally to a strikingly regular pattern for rotational bands
built on top of multiphonon scissors vibrations with weak
anharmonicity (see Fig. 1 of Ref. [10]). The pattern can be
understood as the manifestation of a nearly perfect SU(3)
symmetry: all bands can be well reproduced by an SU(3)
fermion dynamical symmetry model [40] if the projected
neutron and proton BCS vacuum states are considered to be
two SU(3) representations coupled through the Qn −Qp

interaction. The emergence of the low-energy K ¼ 1 band
from the calculation has an obvious correspondence with
the scissors rotational-vibrational mode of a coupled-rotor
model [2].

156Gd is the first nucleus where the 1þ scissors mode was
confirmed experimentally [5], and also is the first nucleus
where the 2þ member of the 1þ scissors band [27] has been
reported. In Fig. 1, we show two rotational bands from the
calculation: the ground-state band (labeled as the 0þgs band),
and the one at ∼3 MeV above it, the 1þ scissors rotational

FIG. 1. Calculated (a) energies and (b) BðE2; I → I − 2Þ
values for the ground-state band (0þgs band) and scissors-mode
rotational band (1þsc band) in 156Gd. Available experimental data
[41] are shown for comparison. In the BðE2Þ calculations here
and later in the paper, standard effective charges eπ ¼ 1.5 and
eν ¼ 0.5 are used.
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band (labeled as the 1þsc band). It can be seen that for the 0þgs
band, both the calculated energies and BðE2Þ values
compare very well with the known experimental data
[41]. In Fig. 1(a), the 1þsc band exhibits an overall curvature
similar to the 0þgs band, suggesting that it has a comparable
moment of inertia as the 0þgs band. In Fig. 1(b), the
calculated BðE2Þ values for the 1þsc band have comparable
values as for the 0þgs band, indicating that the scissors
rotational band has a similar but slightly weaker E2
collectivity.
In Fig. 1(a), our calculation compares well with the

experimental energies of the first two states with I ¼ 1 and
2 in the 1þsc band [27]. The remaining states in the band are
our predictions. It is striking that the calculated 1þsc band is
not a smooth rotational band, but exhibits zigzags between
the odd-spin and even-spin members. The calculated
BðE2; I → I − 2Þ values for the 1þsc band also show
staggerings [see Fig. 1(b)]. To amplify the zigzag behavior,
we replot in Fig. 2(a) the band energies in the form of
energy differences ΔEðIÞ ¼ EðIÞ − EðI − 1Þ. The zigzag
phase, with the only-known first data point ΔEð2Þ being
reproduced qualitatively [27], is such that all ΔEðIÞs for
I ¼ even are lower in energy. The zigzag curve in Fig. 2(a)
follows the same staggering phase as the BðE2; I → I − 2Þ
curve in Fig. 1(b). The calculated intraband BðM1;
I → I − 1Þ values shown in Fig. 2(b) are very small in
magnitude, but also exhibit clear zigzags having the
staggering phase opposite to that of ΔEðIÞ in Fig. 2(a).

For an axially symmetric nucleus such as 156Gd, the
usual rotational picture is that the neutron and proton
ellipsoids take a common symmetry axis and the system
rotates around the axis perpendicular to the symmetry axis
(called principal-axis rotation in the literature). There exists
a D2 symmetry with respect to a 180° rotation around the
principal axis [3]. It is difficult to imagine such a D2

symmetry in cases of rotations with the scissors motion.
One may then think of a more general picture of tilted
rotation (nonprincipal axis rotation) discussed in deformed
nuclei, which implies unavoidably an explicit breaking of
the D2 symmetry [42]. However, the nonprincipal axis
rotation usually leads to enhanced intraband M1 transitions
[43], in contrast to our results in Fig. 2(b) with much
suppressed intraband M1 strength. Palumbo [44], using a
two-rotor model, obtained as a general feature that the
intraband magnetic transition amplitudes in the scissors-
mode rational band vanish, qualitatively consistent with our
BðM1Þ results in Fig. 2(b).
Moments of inertia (MOI) in a bifurcated scissors

rotational band can be discussed with the usual definition
for MOIs

J ðIÞ ¼ 2I − 1

EðIÞ − EðI − 2Þ : ð4Þ

We display the calculated J ðIÞ for the 1þsc band of 156Gd in
Fig. 3, separately for twoΔI ¼ 2 branches with I ¼ even or
odd. One sees that on average, J ðIÞeven is about 10% larger
than J ðIÞodd, suggesting that in a scissors rotational motion
the J ðIÞ alternates in magnitude between odd- and even-
spin states. For a rotational body with conserved angular
momentum, the condition I ¼ Jω requires that either ω
changes discretely with the changing J , meaning that the
rotation is slower (faster) for even (odd) spin states as
compared to smooth rotations when a fixed rotational axis
is assumed, or, the rotational axis must periodically change
its orientation for different spins in response to angular
momentum conservation. The latter possibility suggests a
very unusual rotational picture for isolated many-body
systems in scissor motion [45].

FIG. 2. Staggering features predicted for the scissors-mode
rotational band (1þsc-band) in 156Gd. (a) Energy differences ΔE ¼
EðIÞ − EðI − 1Þ and (b) intraband BðM1; I → I − 1Þ values. In
the BðM1Þ calculations here and in Fig. 4, we use standard
free-nucleon values for gl and gs, with gs damped by a usual
0.75 factor.

FIG. 3. Comparison of moments of inertia for I ¼ even and odd
branches in the 1þsc band in 156Gd.
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The above-discussed scissors states are of collective
orbital motion in nature. In the vicinity of the scissors-state
energy (∼3 MeV), there exist many excited quasiparticle
(qp) states characterized by individual orbitals. The sit-
uation is quite different from γ bands in 156Gd [46] and in
many other nuclei [47–49], which lie at much lower energy
but may also show energy staggering. How do these qp
states affect the bifurcation feature found in the scissors
band?Will they enhance, destroy, or have little effect on the
collective scissors motion? To answer this question, we
enlarge the model space by adding 2-qp states in the
calculation (see [29]). The quasiparticles are associated
separately with the deformed neutron or proton potential,
and therefore we can label them by using the quantum
numbers Kν or Kπ (K is the projection of the single-particle
angular momentum on the symmetry axis). Among the
2-qp K ¼ 1 states, those of the intruder orbits with the
configurations ðνi13=2Þ2 and ðπh11=2Þ2 are included.
Comparing to Fig. 2(a), the coupling of 2-qp states in

Fig. 4(a) amplifies the staggering and pushes the 2þsc state
down to the exact experimental value [27]. In order to keep
the same description for the gs-band properties, here we
increase the proton pairing strength in (1) by a 1.2 factor to
compensate the weakened pairing by inclusion of quasi-
particles. We find that among the 2-qp states, the K ¼ 1
proton 2-qp state coupled from K ¼ 5=2 and 7=2 of πh11=2
contributes clearly to the enhanced scissors staggering. The
reason is that the 2-qp states with two quasiparticles from

the same j-orbit must follow the general staggering rule
[28] so that they stagger in phase with the scissors band
(see explanation in Sec. II of [29]). Figure 4(b) shows
B(M1, 1þ → 0þgs) values. The unperturbed B(M1) is found
to be ∼3.5 μ2N , in contrast to the much suppressed ones
from the QRPA calculation [50]. Mixture of the 2-qp states
significantly reduces it to ∼1.5 μ2N , causing at the same
time a fragmented distribution around the scissors M1. Our
calculated B(E2, 1þsc → 2þgs) is however larger by more than
2 orders of magnitude than the experimentally-suggested
small value [0.037(26) W.u. in [27] ]. A theoretical value
(a few W.u.) for the inter-B(E2) is comparable to that of a
γ-vibrational state in deformed nuclei, which is usually
expected for a transition from an excited collective state to
the ground state. A table of comparison for measured
[27] and calculated transition strengths of the 1þsc scissors
state to the ground band in 156Gd can be found in Ref. [29].
In conclusion, we have discovered a characteristic

feature of the scissors mode that has not been noticed
before: A scissors-mode rotational band is never smooth,
but staggers between odd and even spin states in even–even
nuclei, resulting in a ΔI ¼ 2 bifurcation within the band.
We have discussed that during the scissors-mode rotation
the states showing such staggerings change their moments
of inertia back and forth between odd and even spins, in
response to angular momentum conservation. We consider
the previously unexplained small separation for the excited
2þ state above the 1þ scissors-mode state in 156Gd [27] as
the first experimental evidence of such staggerings.
We have calculated systematically the even–even iso-

topes of 156Gd with N ¼ 90–102 for fixed Z ¼ 64 and
isotones with Z ¼ 60–70 for fixed N ¼ 92, and found that
for all cases the staggering pattern is qualitatively similar to
that shown in Fig. 2(a) (See Fig. 2 of Ref. [29]). In
particular, they all have a lower-than-usual 2þ above the 1þsc
state. Note that these nuclei represent the mass region in
which the Fermi levels lie across from the low-K to high-K
i13=2 (h11=2) orbitals for neutrons (protons), indicating that
the ΔI ¼ 2 bifurcation in the scissors rotational band
may be a general feature. Addition of 2-qp configurations
tends to enhance the staggering, making the bifurcation
even more pronounced. Furthermore, mixture of qp
configurations with the pure scissors state weakens the
B(M1, 1þsc → 0þgs) strength, causing at the same time
fragmentation of M1 distribution. We are aware that
coupling of qp states to collective motion is a complicated
dynamical problem that can depend sensitively on details.
In the present 156Gd example qp states do not destroy, but
enhance the scissors-band bifurcation.
We emphasize that the discussion in the present work

does not require specific effective interactions to produce
the bifurcation. The bifurcation seems to appear by self-
arrangement of the system as long as an appropriate
restoring force between the two “blades” of the scissors
is present. If so, the feature discussed here may exist in

FIG. 4. Effect of quasiparticle configurations. (a) Comparison
of calculated staggering in the scissors rotational band with
and without two-quasiparticle states, and (b) Comparison of
calculated B(M1, 1þ → 0þgs) distribution with and without two-
quasiparticle states.
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similar scissors systems of other fields as well. Finally, we
note that in order to confirm the bifurcation feature, it is
crucial to identify experimentally the excited states with
Iπ ≥ 3þ in the scissors rotational bands.
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