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We present the first exact solution for the time-dependent equations of the macroscopic fluctuation
theory (MFT) for the symmetric simple exclusion process by combining a generalization of the canonical
Cole-Hopf transformation with the inverse scattering method. For the step initial condition with two
densities, we obtain exact and compact formulas for the optimal density profile and the response field that
produce a required fluctuation, both at initial and final times. The large deviation function of the current is
derived and coincides with the formula obtained previously by microscopic calculations. This provides the
first analytic confirmation of the validity of the MFT for an interacting model in the time-dependent regime.
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A fundamental difference between equilibrium and
nonequilibrium physics is that a general law—the
Boltzmann-Gibbs canonical distribution—exists in the
former case. Moreover, dynamical fluctuations in the vici-
nity of equilibrium and linear response theory are well
understood thanks to the Onsager-Machlup functional
[1,2]. However, it is now widely believed that large
deviation functions could play an overarching role for
systems far from equilibrium [3–5] and their study has
become a major focus of contemporary statistical mechan-
ics [6–9]. In a series of seminal works starting from the
early 2000s, Jona-Lasinio and his collaborators proposed a
nonlinear action functional that encodes the fluctuations
and the large deviations for a wide class of diffusive
systems out of equilibrium. This theory, known as the
macroscopic fluctuation theory (MFT) [10–15] posits a
variational principle that determines, in a diffusive system,
the dominant optimal evolution to produce a required
fluctuation. In essence, the problem amounts to solving
a set of two coupled nonlinear partial differential equations
(PDEs) with mixed, nonlocal, initial and final conditions:
the MFT equations.
Another field of research in nonequilibrium physics is to

analyze microscopic interacting particle processes that
display hydrodynamic behavior on the macroscopic scale
[16–18]. One of the simplest and fundamental models is the
symmetric exclusion process (SEP), in which particles on a
lattice perform symmetric random walks subject to hard-
core exclusion. Together with its driven version, the
exclusion process plays the role of a paradigm in many
domains, as the “simplest nonequilibrium model” [19,20].
Many results about exclusion processes have been obtained
analytically, leading to significant information about gen-
eral properties of nonequilibrium systems [6]. From the
very beginning, the SEP has been a major benchmark to

build and investigate the MFT [21–28]. We note that, in
probability theory, a large deviation principle for SEP had
already been established in 1989 by Kipnis, Olla, and
Varadhan with a variational principle related to MFT [29]
(See also Refs. [17,30]). We also mention that, while we
focus on MFT for the diffusive SEP in this article, large
deviation for the asymmetric and ballistic case is also of
great interest (see, for instance, [31,32] for a recent work).
Exact results for large deviation properties of SEP in the

nonstationary regime are quite limited. The large deviation
of the total current through the origin was derived by Bethe
ansatz [25] and the full distribution of a tagged particle
position was obtained in [27,28], using techniques from
integrable probabilities [33–36]. However, the extension of
these approaches to time-dependent observables, such as
the optimal fluctuation history of the process, appears to be
out of reach. This information could be extracted from the
time-dependent solutions of the MFT equations if only one
could solve them: this seems to be a formidable task, since
only stationary or perturbative solutions of the MFT were
found for SEP [24,26,37–41].
Yet, it has been suspected for some stochastic processes

that optimal path equations could be “classically” inte-
grable: this was explicitly recognized by the authors of [42]
for the Kardar-Parisi-Zhang (KPZ) equation with weak
noise, a problem solved by the inverse scattering method
(ISM) in 2021 [43,44]. More recently, the full statistics of
nonstationary heat transfer in the Kipnis-Machioro-Presutti
(KMP) model has been calculated in [45] using again the
ISM: this must be hailed as the first analytical solution of
the MFT equations for a specific (and not microscopically
integrable) model, with very special boundary conditions.
In the meantime, Grabsch et al. [46] made a major

breakthrough in the understanding of large deviations in
single file systems such as the SEP. Without using neither
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integrability nor the MFT, they intuited and unveiled
recursively a closed equation for the final optimal profile,
allowing them to determine that profile and the correspond-
ing large deviations (see [47–49] for precursory works in
the same group).
We present here a general scheme to resolve analytically

the MFT equations for SEP on the infinite line. We devise a
nonlocal transformation that maps these MFT equations to
the classically integrable Ablowitz-Kaup-Newell-Segur
(AKNS) system, that we analyze by ISM. For the step
initial condition with two densities, the calculation of the
scattering amplitudes leads to a solvable Riemann-Hilbert
problem, allowing us to determine analytically the density
profiles and the response fields both at initial and final
times. By retrieving the cumulant generating function of the
current, the relevance of the MFT equations in the time-
dependent regime is confirmed.
The SEP is a continuous time interacting particles

Markov process in which each particle is located on a
discrete site labeled by an integer x ∈ Z and can hop to its
right or left nearest neighboring site with unit rate. Because
of the volume exclusion, jumps to an occupied site are
forbidden (see Fig. 1). We consider the time-integrated
current QT , given by the total number of particles that have
jumped from 0 to 1 minus the total number of particles that
have jumped from 1 to 0 during the time interval ð0; TÞ. In
the long time limit, the current QT satisfies a large-
deviation principle

Prob

�
QTffiffiffiffi
T

p ¼ q

�
≃ exp½−

ffiffiffiffi
T

p
ΦðqÞ� ð1Þ

with a large deviation function ΦðqÞ (note the ffiffiffiffi
T

p
scaling,

which implies anomalous diffusion in single-file systems
[50]). The cumulant generating function μðλÞ of the current
QT is defined as

heλQT i ≃ e
ffiffiffi
T

p
μðλÞ for T → ∞; ð2Þ

where λ is a real parameter (or fugacity) conditioning the
total current q during the time interval ð0; TÞ. The functions
ΦðqÞ and μðλÞ are Legendre transforms of each other. As
already mentioned above, μ was calculated explicitly for
the step initial condition in [25].
The MFT describes the evolution of the system in terms

of two coupled fields defined on a mesoscopic scale: the
density ρðx; tÞ and the auxiliary response field Hðx; tÞ (that
can be interpreted as a dynamically generated local drift). A
dynamical action is ascribed to each history of the system.

In the long time limit, the extremal action principle
determines the optimal path history that produces a
required fluctuation and expresses its probability at the
level of large deviations. In the hydrodynamic limit, the
time-integrated current QT is given by

QT ¼
Z

∞

0

½ρðx; TÞ − ρðx; 0Þ�dx; ð3Þ

and μðλÞ ffiffiffiffi
T

p
is given by the maximum of the functional

S½ρ; H� ¼ λQT − F 0½ρðx; 0Þ� −
Z

T

0

dt
Z

∞

−∞
dxðH∂tρ −HÞ;

ð4Þ

where H½ρ; H� ¼ 1
2
σðρÞð∂xHÞ2 − ð∂xρÞð∂xHÞ with σðρÞ ¼

2ρð1 − ρÞ is the MFT Hamiltonian. The initial free energy
is given by

F 0½ρðx; 0Þ� ¼
Z

∞

−∞
dx

Z
ρðx;0Þ

ρ̄ðxÞ
dr

2½ρðx; 0Þ − r�
σðrÞ ; ð5Þ

for a Bernoulli initial state with density ρ̄ðxÞ [6,38].
The dominant path maximizing the action (4) satisfies

the MFT equations that couple two nonrandom optimal
fields, the density ρðx; tÞ, and the response Hðx; tÞ:

∂tρ ¼ ∂x½∂xρ − σðρÞ∂xH�; ð6Þ

∂tH ¼ −∂2xH −
σ0ðρÞ
2

ð∂xHÞ2: ð7Þ

These equations must be solved with the following con-
ditions at the initial and the final times:

Hðx; TÞ ¼ λθðxÞ; ð8Þ

Hðx; 0Þ ¼ λθðxÞ þ f0ðρðx; 0ÞÞ − f0ðρ̄ðxÞÞ; ð9Þ

where f0ðρÞ ¼ log½ρ=ð1 − ρÞ� is the derivative of the free
energy with respect to the density [26,51]. The MFT
equations are a set of nonlinear coupled PDEs that evolve
in opposite time directions, with a major complication due
to the two-time mixed boundary conditions, rendering
numerical simulations arduous [41,52]. In this work, we
show that the MFT equations, (6), (7) with conditions (8)
and (9), are integrable in the classical sense after a non-
linear transformation and we solve them analytically. This
framework can be stated for general initial conditions but
we focus here on the two-sided Bernoulli initial condition:
at t ¼ 0 all sites are independent, a site with a negative label
is occupied with probability ρ− and a site on the positive
side is occupied with probability ρþ. As the initial condition
fluctuates, this setup is said to be annealed and the meanFIG. 1. The symmetric simple exclusion process.
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density profile at initial time is given by ρ̄ðxÞ ¼ ρ−θð−xÞ þ
ρþθðxÞ [where θðxÞ is the Heaviside theta function].
The ISM [53,54], often presented as a nonlinear analog

of the Fourier transform, lies at the heart of classical
integrability and allows us to prove the existence of an
infinite number of conservation laws and the integrability in
the sense of Liouville [55]. It has led to exact solutions of
dispersive PDEs with solitons, such as the Korteweg–de
Vries equation or the nonlinear Schrödinger equation that
appear in various domains of physics, such as nonlinear
optics [56–58], hydrodynamics [59,60], plasma physics
[61], or Bose-Einstein condensation [62–64]. As already
mentioned, the ISM has also been used in recent works to
solve the short time KPZ equation [43,44] and the KMP
model [45]. A common feature of these works is that the
optimal path equations are manifestly integrable and that
the two-time boundary conditions present some symmetry
property. These characteristics are not shared by the MFT
equations for SEP and this poses a major challenge.
However, the novel nonlocal transformation that we have

discovered,

uðx;tÞ¼ 1

σ0ðρÞ
∂

∂x

�
σðρÞexp

�
−
Z

x

−∞
dy

σ0ðρÞ
2

∂yH
��

; ð10Þ

vðx; tÞ ¼ −
2

σ0ðρÞ
∂

∂x
exp

�Z
x

−∞
dy

σ0ðρÞ
2

∂yH

�
; ð11Þ

allows us to map the MFT equations (6) and (7) to the
AKNS equations [65]:

∂tuðx; tÞ ¼ ∂xxuðx; tÞ − 2uðx; tÞ2vðx; tÞ; ð12Þ

∂tvðx; tÞ ¼ −∂xxvðx; tÞ þ 2uðx; tÞvðx; tÞ2: ð13Þ

The transformation (10), (11) unveils the integrability of
SEP at the hydrodynamic level (this fact was foreseen in
[66] by finding solitons in the MFT equations). In the low
density limit, obtained by writing ρ ≔ αρ with α → 0, this
change of variable reduces to the canonical Cole-Hopf
transformation, i.e., ðu; vÞ → ð∂xρe−H;−∂xeH) and the
AKNS equations decouple into two diffusion equations,
evolving forward and backward in time, that were used to
investigate reflecting Brownian motions [26,39]. The trans-
formation above is valid for general quadratic σðρÞ. The
AKNS system with the same type of boundary conditions
below also appeared in the analysis of [43,45].
The initial and final conditions of the MFT equations for

SEP given in Eqs. (9) and (8) are translated into the ones in
terms of the AKNS variables by (10) and (11). For the step
initial density, they become

uðx; 0Þ ¼ ωδðxÞ; ð14Þ

vðx; TÞ ¼ δðxÞ: ð15Þ

Indeed, we obtain uðx; tÞ ∝ ∂xρ − ρð1 − ρÞ∂xH and
vðx; tÞ ∝ −∂xH showing that uðx; 0Þ and vðx; TÞ are
proportional to the Dirac delta function. Because the
AKNS equations are invariant by the rescalings u → Ku
and v → K−1v, the amplitude of the Dirac delta function in
Eq. (15) can be set to unity by duly choosing K. The
parameter ω will be identified as the ubiquitous SEP
parameter [25,28],

ω ¼ ðeλ − 1Þρ−ð1 − ρþÞ þ ðe−λ − 1Þρþð1 − ρ−Þ; ð16Þ

once the scattering amplitudes are determined in (26) and
(27) (see the Supplemental Material [67]). Using again that
∂xHðx; TÞ is a Dirac delta function at time T from Eq. (8),
and taking the rescaling factor K into account, we observe
that the transformations (10) and (11) imply

uðx; TÞ ¼
�
K∂xρðx; TÞ; x < 0;

Ke−Λ∂xρðx; TÞ; x > 0:
ð17Þ

The quantity Λ ¼ 1
2

Rþ∞
−∞ dy σ0ðρÞ∂yHðy; tÞ is conserved by

the MFT dynamics and is given by (see [67])

eΛ ¼ eλ
1þ ðe−λ − 1Þρþ
1þ ðeλ − 1Þρ−

: ð18Þ

Similarly, at t ¼ 0, noting from Eq. (9) that ∂xHðx; 0Þ ¼
2σðρÞ−1∂xρðx; 0Þ for x ≠ 0 and using that Λ is conserved,
we deduce

vðx; 0Þ ¼
�
−2K−1σðρ−Þ−1∂xρðx; 0Þ; x < 0;

−2K−1σðρþÞ−1eΛ∂xρðx; 0Þ; x > 0:
ð19Þ

In the following we will determine ρ andH by solving (12),
(13) with the three parameters ω, Λ, K appropriately fixed.
To solve the AKNS equations (12), (13), we follow the

standard procedure of ISM [53,54]. However, there is an
important difference: while conventionally one studies the
initial value problem, here we must consider equations
with mixed boundary condition (14), (15). First, we
reformulate the equations in terms of the associated
auxiliary linear problem, which for the AKNS system
takes the form

∂xΨðx; tÞ ¼ Uðx; t; kÞΨðx; tÞ; ð20Þ

∂tΨðx; tÞ ¼ Vðx; t; kÞΨðx; tÞ; ð21Þ

where the vector Ψðx; tÞ plays the role of a wave
function. The 2 × 2 matrix-valued functions U and V are
given by
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U ¼
� −ik vðx; tÞ
uðx; tÞ ik

�
; ð22Þ

V¼
�

2k2þuðx;tÞvðx;tÞ 2ikvðx;tÞ−∂xvðx;tÞ
2ikuðx;tÞþ∂xuðx;tÞ −2k2−uðx;tÞvðx;tÞ

�
: ð23Þ

The compatibility of Eqs. (20) and (21) (i.e., ∂t∂xΨ ¼
∂x∂tΨ) is ensured by the zero curvature condition,
∂tU − ∂xV þ ½U;V� ¼ 0, which is met if the functions u
and v satisfy the AKNS system (12) and (13) [68].
Next, we solve the direct scattering problem of the linear

equation (20), which resembles that of the Dirac equation
where u and v, unknown in AKNS, now play the role of
potentials. Assuming that uðx; tÞ and vðx; tÞ are rapidly
decreasing at infinity, i.e., uðx; tÞ; vðx; tÞ → 0 as jxj → ∞,
and the solutions behave as plane waves for large jxj. The
incoming or outgoing plane waves from x → −∞,

ϕðx; kÞ ∼
�
e−ikx

0

�
and ϕ̄ðx; kÞ ∼ −

�
0

eikx

�
; ð24Þ

will be scattered at x → þ∞ as follows:

ϕðx;kÞ∼
�
aðkÞe−ikx
bðkÞeikx

�
and ϕ̄ðx;kÞ∼

�
b̄ðkÞe−ikx
−āðkÞeikx

�
: ð25Þ

This defines the scattering amplitudes, denoted by aðkÞ,
āðkÞ, bðkÞ, b̄ðkÞ. The calculation of these amplitudes at
t ¼ 0 and t ¼ T under the initial and final conditions (14)
and (15) is elementary, akin to solving the Schrödinger
equation with a delta potential (see [67]). At t ¼ 0, we
obtain

aðk;0Þ¼ 1þωv̂þðkÞ; bðk;0Þ¼ω;

āðk;0Þ¼ 1þωv̂−ðkÞ; b̄ðk;0Þ¼−½v̂ðkÞþωv̂þðkÞv̂−ðkÞ�:
ð26Þ

Similarly, at t ¼ T, we have

aðk; TÞ ¼ 1þ ûþðkÞ; bðk; TÞ ¼ ûðkÞ þ ûþðkÞû−ðkÞ;
āðk; TÞ ¼ 1þ û−ðkÞ; b̄ðk; TÞ ¼ −1: ð27Þ

Here û�ðkÞ and v̂�ðkÞ are the half-Fourier transforms of
uðx; TÞ and vðx; 0Þ defined as

û�ðkÞ ¼
Z
R∓

uðx; TÞe−2ikxdx; ð28Þ

v̂�ðkÞ ¼
Z
R�

vðx; 0Þe2ikxdx; ð29Þ

and we use the notations ûðkÞ ≔ ûþðkÞ þ û−ðkÞ and
v̂ðkÞ ≔ v̂þðkÞ þ v̂−ðkÞ.

On the other hand, by combining Eq. (25) with Eq. (21),
the time evolution of the scattering amplitudes is obtained
explicitly [53,67]

aðk; tÞ ¼ aðk; 0Þ; bðk; tÞ ¼ bðk; 0Þe−4k2t; ð30Þ

āðk; tÞ ¼ āðk; 0Þ; b̄ðk; tÞ ¼ b̄ðk; 0Þe4k2t: ð31Þ

The fact that the dynamics drastically simplifies in terms of
the scattering amplitudes is a key feature of the ISM. It is
remarkable that the time evolution of the MFTequations for
SEP becomes so simple in terms of the scattering ampli-
tudes. By using the evolution of bðk; tÞ from t ¼ 0 to T, we
deduce a closed equation for û�ðkÞ:

ûðkÞ þ ûþðkÞû−ðkÞ ¼ ωe−4k
2T: ð32Þ

This equation is the Fourier transform of the equation for
determining the density profile at final time, conjectured by
Grabsch et al. [46], by ingenious microscopic consider-
ations and inspection; in this paper we have shown that it
arises as a simple consequence of the AKNS equations.
Note that a closely related relation also appears in the
analysis of the KMP model by Bettelheim et al. [45].
Rewriting Eq. (32) as

½ûþðkÞ þ 1�½û−ðkÞ þ 1� ¼ 1þ ωe−4k
2T; ð33Þ

we obtain a scalar Riemann-Hilbert factorization problem
of finding two functions, analytic on the upper (lower)
complex plane, with a given product along a specific
contour. Note that scalar Riemann-Hilbert problems appear
in many fields of physics and engineering [69–72]. The
solution is standard [55], by taking the logarithm of
Eq. (32) and using the Cauchy formula with an infinitesi-
mal constant ϵ > 0

û�ðkÞ þ 1 ¼ exp

�
� 1

2πi

Z
∞

−∞

logð1þ ωe−4q
2TÞ

q − k ∓ iϵ
dq

�
: ð34Þ

The coefficient in front of the exponential on the right-hand
side of (34) is taken to be unity to ensure that û�ðkÞ
vanishes for k → ∞ for bounded u. Expanding the loga-
rithm inside the integral and using the following formula
(see, e.g., Eqs. 7.2.3 and 7.7.2 in [73]),

� 1

πi

Z
∞

−∞

e−q
2

q − k ∓ iϵ
dq ¼ e−k

2

erfcð∓ ikÞ; ð35Þ

we conclude that [46]

û�ðkÞ þ 1 ¼ exp

�
−
1

2

X∞
n¼1

ð−ωe−4k2TÞn
n

erfcð∓ i
ffiffiffiffiffiffiffiffiffi
4nT

p
kÞ
�
;

ð36Þ
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where erfcðxÞ is the complementary error function. Since
aðk; tÞ and āðk; tÞ are conserved, see Eqs. (30), (31), we
find from Eqs. (26)–(27) that ωv̂� ¼ û�.
Therefore, the density profiles at t ¼ 0 and T are

determined up to the factor K by integrating Eqs. (17)
and (19) with ρðx; tÞ → ρ� for x → �∞. Finally, K is fixed
by imposing the total mass conservation

R∞
−∞½ρðx; TÞ −

ρðx; 0Þ�dx ¼ 0 (see [67]):

K ¼ −2 sinhðλ=2ÞeΛ=2; ð37Þ

where Λ is given in Eq. (18).
Combining all the calculations above, we present exact

formulas for the density profiles. The optimal density
fluctuation at initial time, t ¼ 0, is given by

ρðx; 0Þ ¼
�
ρ− þ A−

R
x
−∞ vðy; 0Þdy; x < 0;

ρþ þ Aþ
R∞
x vðy; 0Þdy; x > 0;

ð38Þ

with A� ¼ σðρ�Þ e∓λ−1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðe�λ−1Þρ∓
1þðe∓λ−1Þρ�

q
. At t ¼ T, the form of

the profile is obtained by replacing vðy; 0Þ by uðy; TÞ and
A� by B� ¼ −½σðρ�Þ=2A�� in Eq. (38). The response field
H at t ¼ 0 is determined thanks to (9). While the final
density can be extracted from the information in [46], our
scheme using ISM allows us to determine simultaneously
the optimal profiles of ρ and H exactly at both initial and
final time. An example for all of them is represented
in Fig. 2.
Finally, the cumulant generating function is retrieved by

noting that μ and QT are dual by Legendre transform, i.e.,
dμ=dλ ¼ QT=

ffiffiffiffi
T

p
[45,74]. Calculating the total current QT

from the profiles at t ¼ 0 and t ¼ T, given in Eq. (38) and
beneath, we obtain, using μð0Þ ¼ 0 and (16),

μðλÞ ¼ 1ffiffiffi
π

p
X∞
n¼1

ð−1Þn−1ωn

n3=2
: ð39Þ

This formula was first found in [25] at the microscopic level
by applying the Bethe ansatz to the SEP. Here it has been
deduced from the action principle of the MFT. The large
deviations of a tracer particle, derived microscopically in
Refs. [27,28], can be extracted along similar lines from the
MFT framework [75].

To summarize, we have presented the first exact solution
of the time-dependent MFT equations for SEP. Albeit these
equations were known for a long time, their solution had
remained out of reach due to their intrinsic complexity and to
cumbrous boundary conditions with respect to time. A key to
the solution has been our novel nonlocal change of variables
given in Eqs. (10) and (11), that generalizes the canonical
Cole-Hopf transformation. This enabled us to map the MFT
equations to the integrable AKNS system and to use the
inverse scattering method. We have derived exact expres-
sions for the optimal density profile and the response field
both at initial and final times. By retrieving the cumulant
generating function of the integrated current, previously
found by a microscopic calculation, we have provided a first
analytic confirmation of the validity of the macroscopic
fluctuation theory in the time-dependent regime.
The present work can be extended in multiple directions.

Many variants of the exclusion process—different geo-
metries, initial conditions, multiple species, asymmetry,
tagged particles, defects, etc.—have been explored during
the last decades and ought to be analyzed with the MFT.
Besides, some diffusive interacting particle processes out of
equilibrium, with identical transport coefficients, could be
solvable by ISM at the macroscopic level, though the
corresponding microscopic models may not be integrable.
Moreover, a somewhat different relation between stochastic
models and classical integrable systems has been found
[76]. Understanding the connections between different
scales of description and various forms of integrability
poses challenging problems.
We are convinced that the analysis of the macroscopic

fluctuation theory with inverse scattering, applied to the
KMP model [45], to SEP in the present work and to the
closely related KPZ equation subject to weak noise [43,44],
opens a fascinating new perspective in the study of
dynamical fluctuations in systems far from equilibrium.

K. M. is thankful to S. Mallick for a careful reading
of the manuscript and to A. Grabsch, O. Bénichou,
R. Dandekar, and P. L. Krapivsky for discussions. The work
of K.M. has been supported by the project RETENUANR-
20-CE40-0005-01 of the French National Research Agency
(ANR). The work of T. S. has been supported by JSPS
KAKENHI Grants No. JP16H06338, No. JP18H01141,
No. JP18H03672, No. JP19L03665, No. JP21H04432,
No. JP22H01143.

*kirone.mallick@ipht.fr
†hmoriya@stat.phys.titech.ac.jp
‡sasamoto@phys.titech.ac.jp

[1] L. Onsager and S. Machlup, Fluctuations and irreversible
processes, Phys. Rev. 91, 1505 (1953).

[2] S. Machlup and L. Onsager, Fluctuations and irreversible
process. II. Systems with kinetic energy, Phys. Rev. 91,
1512 (1953).

( )

(x,T)

4− −

−

+

−
− −2 0 2 4

0.2

0.4

0.6

0.8

x

H(

x,0

x,0)
H(x,T)

4 2 0 2 4
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

H

FIG. 2. Optimal profiles of ρ (left) and H (right) at t ¼ 0 and at
t ¼ T, with ρþ ¼ 1=3, ρ− ¼ 2=3, λ ¼ 1, and T ¼ 1.

PHYSICAL REVIEW LETTERS 129, 040601 (2022)

040601-5

https://doi.org/10.1103/PhysRev.91.1505
https://doi.org/10.1103/PhysRev.91.1512
https://doi.org/10.1103/PhysRev.91.1512


[3] S. R. S. Varadhan, Large Deviations and Applications
(Siam, Philadelphia, 1984).

[4] H. Touchette, The large deviation approach to statistical
mechanics, Phys. Rep. 478, 1 (2009).

[5] J. L. Lebowitz and H. Spohn, A Gallavotti-Cohen-type
symmetry in the large deviation functional for stochastic
dynamics, J. Stat. Phys. 95, 333 (1999).

[6] B. Derrida, Non-equilibrium steady states: Fluctuations and
large deviations of the density and of the current, J. Stat.
Mech. (2007) P07023.

[7] B. Derrida, Microscopic versus macroscopic appro-
aches to non-equilibrium systems, J. Stat. Mech. (2011)
P01030.

[8] H. Touchette and R. J. Harris, Large deviation approach to
nonequilibrium systems, in Nonequilibrium Statistical
Physics of Small Systems: Fluctuation Relations and
Beyond, edited by R. Klages, W. Just, and C. Jarzynski
(Wiley-VCH Verlag, New York, 2013).

[9] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.
Landim, Large deviation approach to non equilibrium
processes in stochastic lattice gases, Bull. Braz. Math.
Soc. 37, 611 (2006).

[10] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.
Landim, Fluctuations in Stationary Nonequilibrium States
of Irreversible Processes, Phys. Rev. Lett. 87, 040601
(2001).

[11] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.
Landim, Macroscopic fluctuation theory for stationary non-
equilibrium states. J. Stat. Phys. 107, 635 (2002).

[12] T. Bodineau and B. Derrida, Current Fluctuations in Non-
equilibrium Diffusive Systems: An Additivity Principle,
Phys. Rev. Lett. 92, 180601 (2004).

[13] T. Bodineau and B. Derrida, Distribution of current in non-
equilibrium diffusive systems and phase transitions, Phys.
Rev. E 72, 066110 (2005).

[14] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.
Landim, Macroscopic fluctuation theory, Rev. Mod. Phys.
87, 593 (2015).

[15] G. Jona-Lasinio, Thermodynamics of stationary states,
J. Stat. Mech. (2014) P02004.

[16] S. Katz, J. L. Lebowitz, and H. Spohn, Nonequilibrium
steady states of stochastic lattice gas models of fast ionic
conductors, J. Stat. Phys. 34, 497 (1984).

[17] H. Spohn, Large Scale Dynamics of Interacting Particles
(Springer-Verlag, New York, 1991).

[18] G. M. Schütz, Exactly solvable models for many-body
systems far from equilibrium, in Phase Transitions and
Critical Phenomena (Academic Press, 2001), Vol. 19,
pp. 1–251.

[19] B. Derrida, An exactly soluble non-equilibrium system: The
asymmetric simple exclusion process, Phys. Rep. 301, 65
(1998).

[20] T. Chou, K. Mallick, and R. K. P. Zia, Non-equilibrium
statistical mechanics: From a paradigmatic model to bio-
logical transport, Rep. Prog. Phys. 74, 116601 (2011).

[21] B. Derrida, J. L. Lebowitz, and E. R. Speer, Free Energy
Functional for Nonequilibrium Systems: An Exactly
Solvable Case, Phys. Rev. Lett. 87, 150601 (2001).

[22] B. Derrida, J. L. Lebowitz, and E. R. Speer, Exact Free
Energy Functional for a Driven Diffusive Open Stationary

Nonequilibrium System, Phys. Rev. Lett. 89, 030601
(2002).

[23] B. Derrida, J. L. Lebowitz, and E. R. Speer, Large deviation
of the density profile in the steady state of the open
symmetric simple exclusion process, J. Stat. Phys. 107,
599 (2002).

[24] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.
Landim, Large deviations for the boundary driven sym-
metric simple exclusion process, Math. Phys. Anal. Geom.
6, 231 (2003).

[25] B. Derrida and A. Gerschenfeld, Current fluctuations of the
one dimensional symmetric simple exclusion process with
step initial condition, J. Stat. Phys. 136, 1 (2009).

[26] B. Derrida and A. Gerschenfeld, Current fluctuations in one
dimensional diffusive systems with a step initial density
profile, J. Stat. Phys. 137, 978 (2009).

[27] T. Imamura, K. Mallick, and T. Sasamoto, Large Deviations
of a Tracer in the Symmetric Exclusion Process, Phys. Rev.
Lett. 118, 160601, 2017.

[28] T. Imamura, K. Mallick, and T. Sasamoto, Distribution of a
tagged particle position in the one-dimensional symmetric
simple exclusion process with two-sided Bernoulli initial
condition, Commun. Math. Phys. 384, 1409 (2021).

[29] C. Kipnis, S. Olla, and S. R. S. Varadhan, Hydrodynamics
and large deviations for simple exclusion processes,
Commun. Pure Appl. Math. 42, 115 (1989).

[30] S. Sethuraman and S. R. S. Varadhan, Large deviations for
the current and tagged particle in 1D nearest-neighbor
symmetric simple exclusion, Ann. Prob. 41, 1461
(2013).

[31] J. Quastel and L.-C. Tsai, Hydrodynamic large deviations of
TASEP, arXiv:2104.04444.

[32] B. Doyon, G. Perfetto, T. Sasamoto, and T. Yoshimura,
Ballistic macroscopic fluctuation theory, arXiv:2206.14167.

[33] G. M. Schütz, Exact solution of the master equation
for the asymmetric exclusion process, J. Stat. Phys. 88,
427 (1997).

[34] C. A. Tracy and H. Widom, Integral formulas for the
asymmetric simple exclusion process, Commun. Math.
Phys. 279, 815 (2008).

[35] A. Borodin, I. Corwin, and T. Sasamoto, From duality to
determinants for q-TASEP and ASEP, Ann. Prob. 42, 2314
(2014).

[36] A. Borodin and I. Corwin, Macdonald processes, Probab.
Theory Relat. Fields 158, 225 (2014).

[37] T. Bodineau and B. Derrida, Cumulants and large deviations
of the current through non-equilibrium steady states, C. R.
Phys. 8, 540 (2007).

[38] P. L. Krapivsky and B. Meerson, Fluctuations of current in
nonstationary diffusive lattice gases, Phys. Rev. E 86,
031106 (2012).

[39] P. L. Krapivsky, K. Mallick, and T. Sadhu, Large Deviations
in Single-File Diffusion, Phys. Rev. Lett. 113, 078101
(2014).

[40] B. Meerson and P. V. Sasorov, Extreme current fluctuations
in a non-stationary stochastic heat flow, J. Stat. Mech.
(2013) P12011.

[41] B. Meerson and P. V. Sasorov, Extreme current fluctuations
in lattice gases: Beyond nonequilibrium steady states,
Phys. Rev. E 89, 010101(R) (2014).

PHYSICAL REVIEW LETTERS 129, 040601 (2022)

040601-6

https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1023/A:1004589714161
https://doi.org/10.1088/1742-5468/2007/07/P07023
https://doi.org/10.1088/1742-5468/2007/07/P07023
https://doi.org/10.1088/1742-5468/2011/01/P01030
https://doi.org/10.1088/1742-5468/2011/01/P01030
https://doi.org/10.1007/s00574-006-0031-0
https://doi.org/10.1007/s00574-006-0031-0
https://doi.org/10.1103/PhysRevLett.87.040601
https://doi.org/10.1103/PhysRevLett.87.040601
https://doi.org/10.1023/A:1014525911391
https://doi.org/10.1103/PhysRevLett.92.180601
https://doi.org/10.1103/PhysRevE.72.066110
https://doi.org/10.1103/PhysRevE.72.066110
https://doi.org/10.1103/RevModPhys.87.593
https://doi.org/10.1103/RevModPhys.87.593
https://doi.org/10.1088/1742-5468/2014/02/P02004
https://doi.org/10.1007/BF01018556
https://doi.org/10.1016/S0370-1573(98)00006-4
https://doi.org/10.1016/S0370-1573(98)00006-4
https://doi.org/10.1088/0034-4885/74/11/116601
https://doi.org/10.1103/PhysRevLett.87.150601
https://doi.org/10.1103/PhysRevLett.89.030601
https://doi.org/10.1103/PhysRevLett.89.030601
https://doi.org/10.1023/A:1014555927320
https://doi.org/10.1023/A:1014555927320
https://doi.org/10.1023/A:1024967818899
https://doi.org/10.1023/A:1024967818899
https://doi.org/10.1007/s10955-009-9772-7
https://doi.org/10.1007/s10955-009-9830-1
https://doi.org/10.1103/PhysRevLett.118.160601
https://doi.org/10.1103/PhysRevLett.118.160601
https://doi.org/10.1007/s00220-021-03954-x
https://doi.org/10.1002/cpa.3160420202
https://doi.org/10.1214/11-AOP703
https://doi.org/10.1214/11-AOP703
https://arXiv.org/abs/2104.04444
https://arXiv.org/abs/2206.14167
https://doi.org/10.1007/BF02508478
https://doi.org/10.1007/BF02508478
https://doi.org/10.1007/s00220-008-0443-3
https://doi.org/10.1007/s00220-008-0443-3
https://doi.org/10.1214/13-AOP868
https://doi.org/10.1214/13-AOP868
https://doi.org/10.1007/s00440-013-0482-3
https://doi.org/10.1007/s00440-013-0482-3
https://doi.org/10.1016/j.crhy.2007.04.014
https://doi.org/10.1016/j.crhy.2007.04.014
https://doi.org/10.1103/PhysRevE.86.031106
https://doi.org/10.1103/PhysRevE.86.031106
https://doi.org/10.1103/PhysRevLett.113.078101
https://doi.org/10.1103/PhysRevLett.113.078101
https://doi.org/10.1088/1742-5468/2013/12/P12011
https://doi.org/10.1088/1742-5468/2013/12/P12011
https://doi.org/10.1103/PhysRevE.89.010101


[42] M. Janas, A. Kamenev, and B. Meerson, Dynamical phase
transition in large-deviation statistics of the Kardar-Parisi-
Zhang equation, Phys. Rev. E 94, 032133 (2016).

[43] A. Krajenbrink and P. Le Doussal, Inverse Scattering of the
Zakharov-Shabat System Solves the Weak Noise Theory of
the Kardar-Parisi-Zhang Equation, Phys. Rev. Lett. 127,
064101 (2021).

[44] A. Krajenbrink and P. Le Doussal, Inverse scattering
solution of the weak noise theory of the Kardar-Parisi-
Zhang equation with flat and Brownian initial conditions,
Phys. Rev. E 105, 054142 (2022).

[45] E. Bettelheim, N. R. Smith, and B. Meerson, Inverse
Scattering Method Solves the Problem of Full Statistics
of Nonstationary Heat Transfer in the Kipnis-Marchioro-
Presutti Model, Phys. Rev. Lett. 128, 130602 (2022).

[46] A. Grabsch, A. Poncet, P. Rizkallah, P. Illien, and O.
Bénichou, Exact closure and solution for spatial correlations
in single-file diffusion, Sci. Adv. 8, 5043 (2022).

[47] P. Illien, O. Bénichou, C. Mejía-Monasterio, G. Oshanin,
and R. Voituriez, Active Transport in Dense Diffusive
Single-File Systems, Phys. Rev. Lett. 111, 038102 (2013).

[48] A. Poncet, O. Bénichou, and P. Illien, Cumulant generating
functions of a tracer in quenched dense symmetric exclusion
processes, Phys. Rev. E 103, L040103 (2021).

[49] A. Poncet, A. Grabsch, P. Illien, and O. Bénichou,
Generalized Correlation Profiles in Single-File Systems,
Phys. Rev. Lett. 127, 220601 (2021).

[50] P. L. Krapivsky, S. Redner, and E. Ben-Naim, A Kinetic
View of Statistical Physics (Cambridge University Press,
Cambridge, England, 2010).

[51] P. L. Krapivsky, K. Mallick, and T. Sadhu, Tagged particle
in single-file diffusion, J. Stat. Phys. 160, 885 (2015).

[52] A. Vilenkin, B. Meerson, and P. V. Sasorov, Extreme
fluctuations of current in the symmetric simple exclusion
process: A non-stationary setting, J. Stat. Mech. (2014)
P06007.

[53] M. J. Ablowitz and H. Segur, Solitons and the Inverse
Scattering Transform (SIAM, Philadelphia, 1981).

[54] L. Faddeev and L. Takhtajan, Hamiltonian Methods in the
Theory of Solitons (Springer, Berlin, Heidelberg, 1987).

[55] M. Dunajski, Solitons, Instantons and Twistors (OUP,
Oxford, 2009).

[56] P. Sprenger, M. A. Hoefer, and G. A. El, Hydrodynamic
optical soliton tunneling, Phys. Rev. E 97, 032218 (2018).

[57] M. J. Ablowitz, G. Biondini, and L. A. Ostrovsky, Optical
solitons: Perspectives and applications, Chaos 10, 471
(2000).

[58] A. C. Newell and J. V. Moloney, Nonlinear Optics
(Addison-Wesley, Redwood City, 1992).

[59] M. A. Hoefer, M. J. Ablowitz, and P. Engels, Piston
Dispersive Shock Wave Problem, Phys. Rev. Lett. 100,
084504 (2008).

[60] A. Osborne, Nonlinear Ocean Waves and the Inverse
Scattering Transform (Academic Press Inc., New York,
2006).

[61] E. A. Kuznetsov, A. M. Rubenchik, and V. E. Zakharov,
Soliton stability in plasmas and hydrodynamics, Phys. Rep.
142, 103 (1986).

[62] T. Frisch, Y. Pomeau, and S. Rica, Transition to Dissipation
in a Model of Superflow, Phys. Rev. Lett. 69, 1644 (1992).

[63] V. Hakim, Nonlinear Schrödinger flow past an obstacle in
one dimension, Phys. Rev. E 55, 2835 (1997).

[64] M. A. Hoefer, M. J. Ablowitz, I. Coddington, E. A. Cornell,
P. Engels, and V. Schweikhard, Dispersive and classical
shock waves in Bose-Einstein condensates and gas
dynamics, Phys. Rev. A 74, 023623 (2006).

[65] M. J. Ablowitz, D. J Kaup, A. C Newell, and H. Segur, The
inverse scattering transform-Fourier analysis for nonlinear
problems, Stud. Appl. Math. 53, 249 (1974).

[66] A. P. Polychronakos, Solitons in fluctuating hydrodynamics
of diffusive processes, Phys. Rev. E 101, 022209 (2020).

[67] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.129.040601 for techni-
cal details of scattering amplitudes in order to make our
paper self-consistent and calculations on the determination
of the three constants Λ, ω, and K.

[68] More generally, it can be shown [53] that the zero-curvature
condition is satisfied by the equations αut ¼ 1

2
uxx − u2v and

αvt ¼ − 1
2
vxx þ v2u, where α is an arbitrary scalar, which

can be chosen to be real or imaginary without breaking
integrability. The NLS equation is obtained by taking
v ¼ �u� and α ¼ i. The system (12), (13) considered here
corresponds to the choice α ¼ 1=2, which can be interpreted
as an imaginary time evolution.

[69] C. C. Mei, Mathematical Analysis in Engineering
(Cambridge University Press, Cambridge, England, 1995).

[70] N. I. Muskhelishvili, Some Basic Problems of the Mathe-
matical Theory of Elasticity (Noordhoff, Leyden, 1962).

[71] J. R. Rice, Mathematical Analysis in the Mechanics of
Fracture in Fracture—An Advanced Treatise, edited by
H. Liebowitz (Academic Press Inc., New-York, 1968),
Vol. 2.

[72] M. F. Kanninen and C. H. Popelar, Advanced Fracture
Mechanics (Oxford University Press, London, UK, 1985).

[73] NIST Digital Library of Mathematical Functions, edited by
F.W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V.
Saunders, H. S. Cohl, and M. A. McClain, http://dlmf.nist
.gov/, Release 1.1.4 of 2022-01-15.

[74] R. Dandekar (private communication).
[75] K. Mallick, H. Moriya, and T. Sasamoto (to be published).
[76] J. Quastel and D. Remenik, KP governs random growth off a

1-dimensional substrate, Forum of Mathematics, Pi 10, e10
(2022).

PHYSICAL REVIEW LETTERS 129, 040601 (2022)

040601-7

https://doi.org/10.1103/PhysRevE.94.032133
https://doi.org/10.1103/PhysRevLett.127.064101
https://doi.org/10.1103/PhysRevLett.127.064101
https://doi.org/10.1103/PhysRevE.105.054142
https://doi.org/10.1103/PhysRevLett.128.130602
https://doi.org/10.1126/sciadv.abm5043
https://doi.org/10.1103/PhysRevLett.111.038102
https://doi.org/10.1103/PhysRevE.103.L040103
https://doi.org/10.1103/PhysRevLett.127.220601
https://doi.org/10.1007/s10955-015-1291-0
https://doi.org/10.1088/1742-5468/2014/06/P06007
https://doi.org/10.1088/1742-5468/2014/06/P06007
https://doi.org/10.1103/PhysRevE.97.032218
https://doi.org/10.1063/1.1310721
https://doi.org/10.1063/1.1310721
https://doi.org/10.1103/PhysRevLett.100.084504
https://doi.org/10.1103/PhysRevLett.100.084504
https://doi.org/10.1016/0370-1573(86)90016-5
https://doi.org/10.1016/0370-1573(86)90016-5
https://doi.org/10.1103/PhysRevLett.69.1644
https://doi.org/10.1103/PhysRevE.55.2835
https://doi.org/10.1103/PhysRevA.74.023623
https://doi.org/10.1002/sapm1974534249
https://doi.org/10.1103/PhysRevE.101.022209
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.040601
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.040601
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.040601
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.040601
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.040601
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.040601
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.040601
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dlmf.nist.gov/
https://doi.org/10.1017/fmp.2021.9
https://doi.org/10.1017/fmp.2021.9

