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Angular oscillations can provide a useful probe of the superfluid properties of a system. Such
measurements have recently been applied to dipolar supersolids, which exhibit both density modulation
and phase coherence, and for which robust probes of superfluidity are particularly interesting. So far, these
investigations have been confined to linear droplet arrays, which feature relatively simple excitation
spectra, but limited sensitivity to the effects of superfluidity. Here, we explore angular oscillations in
systems with 2D structure which, in principle, have greater sensitivity to superfluidity. In both experiment
and simulation, we find that the interplay of superfluid and crystalline excitations leads to a frequency of
angular oscillations that remains nearly unchanged even when the superfluidity of the system is altered
dramatically. This indicates that angular oscillation measurements do not always provide a robust
experimental probe of superfluidity with typical experimental protocols.
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Some of the most distinctive manifestations of super-
fluidity in ultracold quantum gases relate to their behavior
under rotation. These include the presence of quantized
vortices [1–3] and persistent currents in ring traps [4], as
well as shape-preserving angular oscillations associated
with a “scissors” mode [5]. Measurements of the scissors
mode frequency have long been used to illuminate the
superfluid properties of a variety of systems [6–11]. With
the recent advent of dipolar supersolids [12–18]—states
that possess both the global phase coherence of a superfluid
and the spatial density modulation of a solid—the scissors
mode provides a tempting way to quantify changes in
superfluidity across the superfluid-supersolid transition
[19,20]. Angular oscillations have also been used to search
for superfluid properties in solid helium [21]. In this case,
however, a change in oscillation frequency initially attrib-
uted to superfluidity was eventually traced, instead, to other
reasons [22]. In this Letter, we study more deeply the
connection between angular oscillations and superfluidity
in dipolar supersolids to determine the extent to which such
experiments can inform our understanding of superfluidity
in these systems.
The goal of these angular oscillation measurements is to

infer the flow patterns allowed for a given fluid. A super-
fluid is constrained by the single-valued nature of its wave
function to irrotational flow (IF), while a nonsuperfluid
system faces no such constraint and, in certain situations,
may be expected to undergo rigid-body rotation (RBR).
Prototypical velocity fields for angular oscillations under
IF (v⃗ ∝ ∇xy) and RBR (v⃗ ∝ rθ̂) are depicted in Figs. 1(a)
and 1(b), respectively. The velocity field associated with

angular rotation is related to the moment of inertia of the
system and, thus, the frequency of angular oscillations.
The ability to distinguish between RBR and IF (and,

thus, in principle, between a classical and superfluid
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FIG. 1. Characteristic velocity profiles for irrotational flow (a)
and rigid-body rotation (b). A wide atomic state (light turquoise
oval) samples a region of space where the two differ significantly,
while a highly elongated state (dark turquoise oval) samples a
region where the two patterns are nearly indistinguishable. (c) We
excite oscillations in the angle θ of our atomic gas by rapidly
rotating the anisotropic trap (dashed oval), then returning it to its
original orientation and observing the subsequent dynamics.
(d) Typical example of experimental angular oscillation for the
zigzag modulated state shown on the right (image averaged over
nine iterations). In this case, the errors from the fit to the state angle
are smaller than themarkers. The red line is a damped sinusoidal fit
used to extract the angular oscillation frequency fosc.
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system) depends critically on the geometry of the system,
and is sensitive only to the character of the flow pattern
where the atomic density is appreciable. As illustrated in
Figs. 1(a) and 1(b), highly elongated states sample only the
region along the weak axis of the trap (near x ¼ 0) where IF
and RBR are identical for small rotations (dark turquoise
regions), while rounder states (light turquoise regions)
sample regions of space where the flow patterns differ
significantly and, thus, are far more sensitive to the
irrotational constraint. Recent works have focused on
systems that form a short linear chain of about two
“droplets” [23] in the supersolid regime [19,20].
In this Letter, we study angular oscillations in systems

with linear and two-dimensional modulation to disentangle
the effect of three important contributions: (i) a narrowing
of the aspect ratio of the gas (geometrical change), (ii) a
reduction in the population of the low-density superfluid
“halo” that occupies the outer regions of the trap, and (iii) a
reduction in the density of the interdroplet connection that
enables the exchange of atoms between droplets, which is
key to the superfluid nature of supersolid systems. We find
that, in linear systems, contributions (i) and (ii) dominate
the change in oscillation frequency associated with the
onset of modulation, while (iii) has a negligible effect.
In dipolar condensates with two-dimensional structure,

which have been a focus of recent work [24–28], the effects
of geometry and superfluidity may be disentangled, and
one may expect to observe a direct link between a change of
the superfluid fraction and a modification of the angular
oscillation frequency. However, we find that the physics at
play is much more complex. Indeed, not only does the
oscillation frequency fail to approach its rigid-body value
for states with a vanishing superfluid connection, but it
remains very close to the value predicted for a superfluid
state. We extensively investigate the system behavior as a
function of geometry and interaction parameters, revealing
a unique multimode response of the dipolar supersolid.
Experimentally, we use a dipolar quantum gas of 164Dy

atoms (up to approximately 5 × 104 condensed atoms),
confined within an optical dipole trap (ODT) of tunable
geometry, formed at the intersection of three laser beams
[25,27,29]. The trap geometry and particle number at the
end of the evaporative cooling sequence determine the
character of the modulated ground state, which can form
linear, zigzag, or triangular lattice configurations [28]. By
varying the applied magnetic field in the vicinity of
Feshbach resonances near 18–23 G, we can access scatter-
ing lengths that correspond to either unmodulated BECs or
modulated states. In past works, we have demonstrated that
modulated states created at the corresponding field have
global phase coherence [25,27]. In this Letter, we expect
the same to be true, but refer to these experimental states
simply as modulated, as we do not repeat the characteri-
zation for every trap condition used. We excite angular
oscillations by using the well-established protocol of

applying a sudden small rotation of the trap, by varying
the relative powers in the ODT beams for 6 ms before
returning them to their original values [Fig. 1(c)]. Using our
high-resolution imaging [30], we observe the in-trap
density profile at a variable time from the excitation, and
extract the angle of the major and minor axes using a
two-dimensional Gaussian fit to the state [31].
A typical angular oscillation is shown in Fig. 1(d), for a

“zigzag”modulated state [25]. From such oscillation traces,
we extract the dominant oscillatory frequency fosc using a
fit to an exponentially damped sinusoid. Typically, the
statistical error on our measurements of fosc is on the sub-
Hertz level, better than our knowledge of the trap frequen-
cies, due to drifts between calibrations. We perform such
measurements for trap geometries ranging from an elon-
gated cigar shape to pancake shaped, and for different
scattering lengths, as summarized in Fig. 2(a).
Within a single-mode approximation, the angular oscil-

lation frequency fosc can be predicted using either a sum-
rule based approach [19,34], or considerations based on
hydrodynamic flow [5]. For RBR, the angular oscillation

frequency is given by frig ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf2y − f2xÞβ

q
, whereas for IF,

the predicted value is firr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf2y − f2xÞ=β

q
[19,20]. Here,

fx;y are the trap frequencies along directions x and y. β ¼
hx2 − y2i=hx2 þ y2i is a geometrical factor that quantifies
the degree of elongation of the atomic cloud (but carries no

(a)

(b)

FIG. 2. Normalized oscillation frequencies fosc from experi-
ment (a) and simulation (b). Blue points represent unmodulated
BECs, red points represent modulated states (expt.) and super-
solid states (sim.), and green points represent independent droplet
arrays. Solid lines are predictions for irrotational flow firr. Dashed
lines are predictions for rigid body rotation frig. The trap frequ-
encies used in the simulation, from left to right, are ðfx; fyÞ ¼
½ð43; 53Þ; ð40; 57Þ; ð37; 62Þ; ð32; 70Þ; ð26; 87Þ� Hz. fz ¼ 122 Hz
for all cases. A similar range is used in the experiment.
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information about the superfluid fraction). As shown in
Fig. 2, frig and frig are more distinct for smaller values of β.
Remarkably, independent of trap geometry or the presence
of modulation, we observe fosc close to the IF prediction
and far from the RBR prediction when the two predictions
differ appreciably.
To gain a deeper understanding of our observations, we

theoretically study the oscillation dynamics using a real-
time simulation of the extended Gross-Pitaevskii equation
(EGPE) [35–37]. To compare to the experimental obser-
vations of Fig. 2(a), first, we calculate the ground state for a
given trap, scattering length, and atom number. Then, we
apply a 0.5° rotation of the trap for 6 ms (we have
confirmed that the character and frequency of the response
do not change for much larger excitations), and then let the
state evolve for 50 ms. Then, we perform the same fitting
procedure as used in the experiment to extract fosc. For the
simulation, we calculate β directly for the ground state (we
confirm that the exact value of β agrees with that extracted
from a Gaussian fit at the 5% level). For simulations
performed on states ranging from the unmodulated BEC to
supersolid (SS) to independent droplet (ID) regimes, with
vanishing superfluid connection between droplets, we
again find that fosc is always very close to firr, in very
good agreement with the experimental data. For isolated
droplet states in particular, fosc can actually be even higher
than the expected value for irrotational flow, indicating that
the oscillation frequency is not necessarily in between
the irrotational and rigid body values.
To further illuminate the dependence fosc on super-

fluidity, we analyze the results of the simulation as a
function of the s-wave scattering length as (Fig. 3).
Scattering lengths of 85a0 yield arrays of (nearly) inde-
pendent droplets, while as ¼ 97a0 produces an unmodu-
lated BEC. In between, we find supersolid states, with low-
density connections between droplets. Inspired by the
formulation of Leggett [38], we quantify the degree of
interdroplet density connection as C ¼ ½R dx=ρðxÞ�−1,
where ρðxÞ is the projected atomic density, evaluated over
the interdroplet connection [Fig. 3(a)] [39].
As shown in Fig. 3, despite the rapid reduction of C with

as, the simulated fosc exhibits a rather constant behavior
with a value always close to the purely irrotational
predictions, firr, for both a linear (1D) and hexagon state
(2D). This observation indicates that (i) the degree of
interdroplet connection is not actually a major determinant
of the angular oscillation frequency and (ii) that the system
does not undergo RBR even for vanishingly small inter-
droplet density connection. The latter conclusion is par-
ticularly evident for hexagon states, where the rigid-body
prediction substantially departs from the irrotational one.
For the linear array, the elongated geometry means that the
frig and firr differ only slightly; see Supplemental Material
for further discussion [31].
At this point, we can clearly see the geometrical

limitations of the linear systems. In linear systems, the

narrowing of the atomic density distribution that occurs
with the onset of modulation causes the dominant con-
tribution to a modification in oscillation frequency as well
as a reduction in sensitivity of the oscillation frequency to
superfluidity. Simultaneously, the transfer of atoms from
the halo to the droplets leads to a reduction of the super-
fluidity of the composite halo-droplet system, which is
accompanied by a small change in the oscillation fre-
quency. However, because the motion induced by rotation
in a linear system is perpendicular to the interdroplet axis,
these effects should not be interpreted as a result of the
weakening superfluid connection along the interdroplet
axis. In contrast, systems with two-dimensional structure
maintain a relatively round aspect ratio in the modulated
regime, and the rotational motion does orient along certain
interdroplet axes.
To better understand the nonrigid nature of the angular

oscillations, we employ a method to extract the character of
the system’s response by analyzing our experimental and
EGPE simulation dynamics in the frequency domain with
respect to time, but in the position domain with respect to
the spatial coordinates. A similar technique has been
applied along one dimension to understand the mode
structure of an elongated condensate [40]. This technique,
which for convenience we refer to as “Fourier transform
image analysis” (FTIA) [31], allows us to extract a power
spectrum of density fluctuations driven by the angular
excitation, as well as the spatial form of the density
fluctuations at each frequency. For comparison, we also

ID SS BEC
(a)

(b)

FIG. 3. Impact of scattering length on simulated scissors mode
frequencies. (a) Interdroplet connection C (defined in text) versus
scattering length for different trap geometries. The calculated
ground state in each trap is shown on the right, with correspond-
ing border colors. (b) Scissors mode frequency versus scattering
length. Solid lines are predictions for irrotational flow firr.
Dashed lines are predictions for rigid body rotation frig. β ranges
from 0.93 to 0.99, and 0.27 to 0.31 in the linear and hexagonal
cases, respectively.
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calculate the spectral power of our rotational signal through
a Fourier transform. For computational robustness, we use
the fitted angle θ in the experimental case, and hxyi for the
simulations. To enhance our frequency resolution, we
analyze simulations with longer durations than are acces-
sible in the experiment (160 to 290 ms).
We apply the FTIA to both simulation and experimental

images in Fig. 4(a). For a BEC, the FTIA gives a dominant
peak in both simulation and experiment, whose frequency
and shape are consistent with a scissors mode oscillation at
the frequency observed from the angular response. For a
zigzag modulated state, we again predominantly observe a
single peak in the FTIA spectrum at the frequency of the
angular oscillation. In the simulation, we can see that the
mode corresponds to the motion of the different droplets in
a pattern reminiscent of IF in an unmodulated superfluid,
and clearly distinct from RBR. In the experiment, the
response of individual droplets is not visible due to shot-to-
shot fluctuations in the exact number and position of
the droplets, but the overall structure is similar to the
simulation.
For hexagonal supersolid [Fig. 4(b)] and isolated droplet

[Fig. 4(c)] states, the FTIA reveals a clear multifrequency
response. For the supersolid, we observe the excitation of
modes near 3 and 25 Hz that do not contribute strongly to
hxyi. The droplet motion associated with the 3 Hz mode is
approximately (but not exactly) shape preserving, and the
frequency is much lower than would be expected for a
single-mode RBR response. For the isolated droplet array,
we again observe a nearly shape-preserving low-frequency
response from FTIA, as well as a dominant angular
response that is split into two frequencies, both above
the scissors mode frequency firr expected for a super-
fluid with the same geometry. In the experiment, the

combination of nonangular excitations associated with
our method used to rotate the trap and relatively rapid
damping of the oscillation prevent us from observing
meaningful mode profiles for small β.
Importantly, the FTIA reveals that, even in cases where

we observe an apparently single-frequency response in
typical rotational observables like θ or hxyi [as in Figs. 4(a)
and 4(b)], the response of the system may, in fact, be
multimode in nature, breaking the single-mode approxi-
mation used to analytically extract firr and frig [19,34]. In
the case of a multifrequency response, firr and frig, instead,
provide an upper bound for the frequency of the lowest
energy excitation—an excitation that is difficult to see with
experimentally accessible observables. Features of these
subdominant modes, including the lack of a strong rota-
tional signal in the low-frequency oscillations and the
apparent similarity between the droplet motion (the motion
of the halo is quite different) near 25 Hz to that of the
dominant rotational mode, remain interesting topics for
future investigation.
As we have noted, not only does the dominant angular

response frequency fail to approach the rigid-body value in
the isolated droplet regime, but it also stays near to the
irrotational prediction. A possible intuitive explanation for
this observation is that the flow pattern of Fig. 1(a)
resembles that of a quadrupolar surface mode, and it is
well known that, for sufficiently strong interactions, the
frequency of such modes is predominantly determined by
the trap parameters, rather than the details of the inter-
particle interactions [34].
In conclusion, measurements of angular oscillation

frequencies offer a simple way to demonstrate superfluidity
in certain conditions. However, care must be taken when
making and interpreting such measurements—geometrical
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FIG. 4. Analysis of mode shapes and response due to angular excitation. Solid lines are the power spectrum obtained from the
rotational signal (θ in the experiment and hxyi in the simulation), and dashed lines are obtained from FTIA (see text, Supplemental
Material [31] for description). Inset panels show the mode shapes for selected modes. Red and blue indicate out-of-phase changes in
density, overlaid onto the average density profile in the panels corresponding to simulation (gray to white). Solid and dashed vertical red
lines represent firr and frig, respectively. (a) Responses in elongated traps from simulation (top) and experiment (bottom), for an
unmodulated BEC (left) and a zigzag droplet state (right). Trap frequencies are fx;y ¼ ½31ð1Þ; 73ð1Þ; 128ð1Þ� Hz, and fx;y;z ¼
½32; 70; 122� Hz for the experiment and theory, respectively. (b) Simulated response of supersolid hexagon state (as ¼ 92a0).
(c) Simulated response of droplet crystal hexagon state (as ¼ 85a0). Note that the ground state has a different orientation for the two
scattering lengths in this trap. Trap frequencies are fx;y;z ¼ ½43; 53; 122� Hz for (b) and (c).
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changes can mask the effects of changing superfluidity, and
usual predictions to which one might compare rely on the
assumption of a single-frequency response of the lowest
energy rotational mode. While the moment of inertia of the
system is defined as the angular momentum of a system in
response to a shape-preserving, steady-state drive, oscil-
lation measurements involve a time-localized change in the
rotation rate of the trap, which may excite modes that do not
meet this criterion. In small, linear systems, the simple exci-
tation spectra means that approximately shape-preserving
oscillations can still be excited [31]. However, we find that
a supersolid with 2D structure, which one might expect to
be an ideal candidate for such measurements, can exhibit an
apparently single-frequency response associated with a
mode that is not the lowest in energy. Further, this exci-
tation frequency is typically very close to that of a purely
superfluid system, even for systems where the effects of
superfluidity are minimal. Therefore, such measurements
do not provide a robust indicator of superfluidity for
modulated systems. In the future, it may be possible to
extract information about superfluidity using a modified
excitation scheme to preferentially excite the lower energy
modes and a more comprehensive analysis scheme suitable
for multifrequency response [41]. However, such tech-
niques would require detailed knowledge of the exact
excitation applied and measurement of response ampli-
tudes, both of which are considerably more challenging
in an experiment than measuring the frequency of an
oscillation.
Finally, we note that, even in the case of single-frequency

response, where the frequency of angular oscillations has a
direct connection to the moment of inertia of the system,
making a clear connection between the moment of inertia
and quantities like a superfluid fraction can be problematic.
Past works have predicted that a system which is partially
superfluid should have a moment of inertia in between the
RBR and IF predictions, linearly interpolated according to
a superfluid fraction [20,38]. While this interpretation may
be valid for systems featuring a rigid crystalline structure
and a uniform distribution of crystalline and superfluid
components, as in [38], it is not necessarily valid for our
small dipolar supersolids, which, in addition to coupled
superfluid-crystalline excitations, feature a nonuniform
degree of modulation across the system.
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