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Bright solitons in atomic Bose-Einstein condensates are strong candidates for high precision matter-
wave interferometry, as their inherent stability against dispersion supports long interrogation times. An
analog to a beam splitter is then a narrow potential barrier. A very narrow barrier is desirable for
interferometric purposes, but in a typical realization using a blue-detuned optical dipole potential, the width
is limited by the laser wavelength. We investigate a soliton interferometry scheme using the geometric
scalar potential experienced by atoms in a spatially dependent dark state to overcome this limit. We propose
a possible implementation and numerically probe the effects of deviations from the ideal configuration.
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Bright solitons are well known within one-dimensional
mean-field models of elongated attractively interacting
Bose-Einstein condensates (BECs). They have been reali-
zed [1–6] in BECs of several species [7], and have much-
discussed potential for atomic interferometry [8–17], owing
to long interrogation times enabled by their self-support
against dispersion, and the phase sensitivity of soliton
collisions [18]. In the limit of high collisional velocity, and
a barrier narrow relative to the soliton width, a single
incident soliton can be split into two solitons with well-
defined relative phase [10–12]. Under the same conditions
two solitons colliding “head-on” at a barrier recombine
with output populations dependent on the incident solitons’
relative phase [10,11]. These processes have recently been
investigated experimentally [19]; in a typical setup, focused
blue-detuned laser beams realize barriers on the micron
scale, comparable to a typical soliton width [19,20]. A
known method to produce subwavelength features is via
rapid change over a small region of the amplitude of one of
two near-resonant laser fields in an atomic Λ configuration,
which can be understood in terms of effective potentials
experienced by spatially dependent dressed states [21–29].
We propose a technique exploiting these properties to
create a single narrow barrier for soliton interferometry
within a quasi-one-dimensional (quasi-1D) BEC. We sub-
ject our proposal to detailed numerical analysis of both the
full Λ system and an effective single-state model, showing
it to provide potentially excellent interferometric perfor-
mance within an experimentally reasonable regime.
We require three internal (hyperfine) atomic states,

labeled jg1i, jg2i, and jei in order of increasing energy,
coupled in a Λ configuration. Assuming the rotating wave
approximation, we consider on-resonant laser couplings

within a frame rotating with the optical frequencies, and
neglect spontaneous decay from jei. The appropriate quasi-
1D vector Gross-Pitaevskii equation (GPE) for a BEC of N
mass m atoms, transversely confined by a tight harmonic
trapping potential of angular frequency ωr, is then
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where j; k ∈ fg1; g2; eg, g1Djk ¼ 2ℏωrajk, the probe beam
Rabi frequency Ω1e ¼ Ωe1 ¼ Ω0ðxÞ, the control beam Rabi
frequency Ω2e ¼ Ωe2 ¼ ΩcðxÞ, and all other Ωjk ¼ 0. The
spatially dependent coupling means the matrix formed
from Ωjk elements is diagonalized by a spatially dependent
dressed-state basis. Transforming to this internal-atomic-
state basis produces an artificial gauge field term [21–24],
resulting in a geometric scalar potential
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for atoms in the dark state jdi ∝ ΩcðxÞjg1i − Ω0ðxÞjg2i. We
illustrate our scheme, using equal-width zeroth- and first-
order Hermite-Gaussian modes for the probe and control
beams, respectively, in Fig. 1. We express the Rabi frequ-
encies as Ω0ðxÞ ¼ Ω0l1=2ϕ0ðxÞ and ΩcðxÞ ¼ Ω1l1=2ϕ1ðxÞ,
where ϕ0ðxÞ ¼ ½2=ðπ1=2lÞ�1=2 expð−x2=l2Þ and ϕ1ðxÞ ¼
ð2x=lÞϕ0ðxÞ are normalized Hermite-Gaussian functions
of width l. Crucially, ΩcðxÞ ¼ hðxÞΩ0ðxÞ, where hðxÞ ¼
x=w and w ¼ ðl=2ÞðΩ0=Ω1Þ. In physical terms, w ¼
ðδl=2ÞðP0=P1Þ1=2, where δ is the (≃1) ratio between di-
pole transition matrix elements, and Pn the nth-order
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Hermite-Gaussian beam power. The common envelope
function then cancels in the resulting dark state jdi ¼
½jg1i − ðw=xÞjg2i�=½1þ ðw=xÞ2�1=2 and [via Eq. (2)] the
geometric scalar potential

VhðxÞ ¼
ℏ2

2mw2

1

½1þ ðx=wÞ2�2 : ð3Þ

Phase-locking of the two laser beams is critical (to avoid
population of bright states) when jg2i contributes signifi-
cantly to jdi [see Fig. 3(c)], however, techniques for
phase-stable Raman coupling of hyperfine states are well
established [30–32]. TheΩc beam can be generated using an
essentially noise-free passive phase retarder [33], or digital
micromirror device [34], and changes in optical path length
between the two beams (potentially leading to phase drift)
can be interferometrically stabilized if required [35]. Active
stabilization techniques [36] can be used in colocating the
beams (also with respect to an external trapping potential, if
necessary), noting that slightly unequal beam centers and
widths (relative to l) do not cause significant qualitative
changewithin the relevant regime of decreasingw. Our GPE
treatment ignores quantum fluctuations [10,17]; in the
present atom-interferometer context center-of-mass fluctu-
ations are key, effects fromwhich can essentially be avoided
in the appropriate velocity regime [14,19,37].
Far from the barrier, we initialize with a soliton in state

jdi ≈ jg1i. Slow (relative to internal state dynamics) pass-
age across the barrier minimizes coupling to other dressed
states; jdi is adiabatically followed, and jei remains unpo-
pulated, preventing spontaneous decay. This is compatible
with the “sudden” passage required for interferometrically
desirable high-velocity and narrow-barrier collisions, as we

can choose Ω≡Ω0ð0Þ ¼ ð2=π1=2Þ1=2Ω0, setting the time-
scale for internal atomic dynamics independently from the
value of w. It is in principle always possible to set Ω
sufficiently high to ensure internal dynamics faster than
passage across the barrier. An approximate single-state
model, assuming the atoms remain in the internal dark state
with spatial profile ψd, leads to the scalar GPE
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In the idealized scenario that the scattering lengths ajk are
all equal, Eq. (4) applies with Vd ¼ Vh, consistent with in
this case bright soliton solutions to Eq. (1) existing with
spatial density profile independent of the internal state
population distribution [38,39]. A more realistic scenario is
to tune a11 by a Feshbach resonance to a negative value to
create bright solitons in state jg1i, where we assume the
other scattering lengths are fixed at a background value
ajk ¼ ga11, in which case

Vdðx; jψdj2Þ¼VhðxÞþðg−1Þ 2ðx=wÞ
2þ1

½1þðx=wÞ2�2g
1D
11 jψdj2; ð5Þ

reverting to Vd ¼ Vh when g ¼ 1.
We simulate the vector GPE [Eq. (1)] and scalar GPE

[Eq. (4)] with periodic boundary conditions, correspond-
ing to a quasi-1D ring trap configuration. We take 85Rb
with jg1i ¼ jF ¼ 2;MF − 2i and jg2i ¼ jF ¼ 2;MF ¼ 0i
coupled via the D1 line as an inspirational example. This
has a wide Feshbach resonance around B0 ¼ 156 G
[40,41], which we use to tune a11 ≈ −12 a0, within the
stable soliton region [3,42,43]. Assuming all other scatter-
ing lengths to be equal to the background value abg ¼
−441 a0 yields g ≈ 40. To broaden our analysis, we vary g
between −40 and 40. We work in “soliton” units of length
ℏ2=mjg1D11 jN, time ℏ3=mðg1D11NÞ2, and energy mðg1D11N=ℏÞ2
[44]. Unless otherwise stated, we express quantities in these
units, with total density normalized to 1. We set l ¼ 2

ffiffiffi
2

p
in

our vector GPE simulations; for the above value of a11,
N ¼ 2500 and ωr ¼ 2π × 40 Hz, this corresponds to a
metric value of 2.7 μm [19]. We assume an initial bright
soliton ψ1 ¼ ð1=2Þsechð½xþ L=4�=2Þeivx in state jg1i, with
ψ2 ¼ ψe ¼ 0, and ring trap circumference L ¼ 64π.
We first use the scalar GPE [Eq. (4)] to investi-

gate soliton collisions with the squared-Lorentzian barrier
Vh. We compare the total fraction of transmitted
atoms T with the analytic approximation for collisions
with a same-height-and-area Rosen-Morse barrier, VRM ¼
½1=ð2w2Þ�sech2ð4x=½πw�Þ, in the high-velocity limit (neg-
lecting the nonlinear term during the collision) [19,45]. We
also compare indirectly to scalar GPE simulations with a
same-area δ-function barrier, Vd ¼ VδðxÞ ¼ ½π=ð4wÞ�δðxÞ,
which approach their own analytic high-velocity limit

(a) (b)

(c)

(d) (i)

(d) (ii)

B

optical trap

FIG. 1. Proposed coherent soliton splitting scheme. (a) Profiles
of differently polarized Ω0 and Ωc barrier-forming beams in the x,
z plane at y ¼ 0. (b) Atomic level configuration; we typically
consider Δ ¼ 0. (c) Schematic of an optical waveguide used to
contain the solitons; a magnetic bias field B parallel to the Ω0 and
Ωc beams provides a quantization axis. (d)(i) An initial velocity v
soliton propagating in the þx direction (d)(ii) splits into two
equal-size counterpropagating solitons.
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TδðαÞ ¼ α2=ð1þ α2Þ, where α ¼ 4vw=π is the ratio
between velocity and barrier area [46]. Figure 2 shows
numerical transmission curves for Vh and Vδ barriers with
different values of w plotted against α. As w decreases, the
transmission curves approach the analytic high-velocity
limits for VRM and Vδ. How Figs. 2(a) and 2(b) differ
illustrates a key point. Within an interferometer, an effec-
tive soliton beam splitter should achieve T ¼ 0.5 in the
tunneling regime (ratio γ between per-atom kinetic energy
and barrier height satisfies γ < 1). The outgoing soliton
velocities may otherwise have significantly different mag-
nitudes, as the splitting will increasingly be due simply to
reflection of low-velocity and transmission of high-velocity
atoms (velocity filtering regime) [19]. As collision veloc-
ities increase, we need decreasing barrier widths to remain
in the tunneling regime [12,37,47]. The Vh barrier width w
and area π=ð4wÞ are intrinsically inversely related, fixing
the ratio γ ¼ ðvwÞ2 ¼ ðπ=4Þ2α2. Assuming T ¼ 0.5 occurs
close to α ¼ 1, γ tends toward ðπ=4Þ2 ≈ 0.61. The δ-
function limit γ → 0 is therefore not attained with the
Vh barrier; as the width decreases with increasing ratio
Ω1=Ω0, the velocity at which T ¼ 0.5 is nonetheless within
the γ < 1 tunneling regime. In Fig. 3 we investigate these
same collisions using the vector GPE description [Eq. (1)]
for varying w. We fix incoming soliton velocities at values
resulting in T ¼ 0.5 for the scalar GPE with Vd ¼ Vh
[Fig. 2(a)]. In Figs. 3(a)–3(d) we consider equal scattering
lengths (g ¼ 1) and characterize internal state populations
as functions of time during the collision, showing the
integrated time spent in state jg2i as a function of w in (d).
As expected, decreasing w generally reduces the popula-
tions of jg2i and jei and increases that of jg1i; the integrated
time spent in state jg2i also decreases. In Fig. 3(e) we show
the transmission T as a function of w for a range of
scattering length ratios g; as w decreases, the effects of
g ≠ 1 reduce. The solid lines in Fig. 3(e) show results of the
scalar GPE with fully nonlinear Vdðx; jψdj2Þ [Eq. (5)],
which clearly matches the vector GPE well over the range
of g we explore.

While various interferometric configurations are pos-
sible, we consider a conceptually simple quasi-1D ring trap
with a single barrier. The barrier splits a single soliton into
two equal-amplitude, equal-speed counterpropagating
daughter solitons, which pass through one another and
subsequently phase-sensitively recombine at the same
barrier [14]. Imposing a relative phase θ between the
daughter solitons, the fraction of atoms recombined to
one side of the barrier should vary sinusoidally with θ in the
high velocity and narrow barrier limit (i.e., w → 0). We
otherwise expect a nonlinearity-induced “skew” in the
sinusoidal dependence [11], and employ (generalized)
Clausen functions SzðθÞ to empirically parametrize this
effect. We fit the final population on the “transmitted” side
of the barrier after the recombination with

T2ðθÞ ¼
1

2
½1þ ASzðθ − εÞ�; ð6Þ

which ranges from a sawtooth function (z ¼ 1) to a
sinusoid (z → ∞). To improve fitting convergence and
ensure bounded limits, we fit and present results in terms of
z−1, where smaller z−1 corresponds to less skew [48,49].
The phase shift ε incorporates relative phases accumulated
during barrier collisions and subsequent evolution, and A is
the contrast or “fringe visibility.” For a δ-function barrier in
the high-velocity limit z−1 → 0, A ¼ 1, and ε ¼ π=2
[11,46]. In Fig. 4, we show this limit is effectively reached

FIG. 2. Bright soliton collisions with the geometric barrier Vh
[Eq. (2)] in the scalar GPE [Eq. (4)]. The plots show transmission
as a function of α (ratio between velocity and barrier area, in units
of ℏ−1), for the barriers Vh (a) and Vδ (b), and different values of
the width w. Dashed lines in (a) and (b) show high-velocity limits
for barriers VRM and Vδ, respectively.

FIG. 3. Bright soliton collisions with the proposed barrier
configuration in the vector GPE [Eq. (1)]. (a)–(c) Populations
as functions of time (in units of τ ¼ L=2v, the time over which
the soliton moves from −L=4 to L=4) of states jei, jg1i, and jg2i,
respectively. (d) Integrated time spent in state jg2i as a function of
w. In (a)–(d), we set Ω ¼ 104 and g ¼ 1. (e) Transmission as a
function of w for different values of g, where we setΩ ¼ 106, and
fix incoming soliton velocities at values resulting in T ¼ 0.5 for
scalar GPE simulations with Vh barriers [Fig. 2(a)]; solid lines
show equivalent-parameter scalar GPE simulations with fully
nonlinear barrier Vdðx; jψdj2Þ [Eq. (5)].
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with the Vh barrier in the scalar GPE. We compare this
scenario to the scalar GPE with alternative barriers
Vd ¼ VδðxÞ, Vd ¼ VRMðxÞ, and a narrow, fixed-width,
Gaussian barrier with equal area to Vh: Vd ¼ VGðx; σÞ ¼
f½π=ð4wÞ�=½ð2πÞ1=2σ�g expð−x2=½2σ2�Þ. For each data point
a root-finding algorithm sets the initial velocity to achieve
transmission T ¼ 0.5 at the first collision, and we model a
range of imposed phases θ. Figure 4(a) shows T2ðθÞ for the
Vh barrier, directly illustrating the decrease in skew for
decreasing w. Figures 4(b)–4(d) show the values of z−1, A,
and ε extracted by fitting Eq. (6) to the numerical
simulations at width w. The Vh barrier, and its Rosen-
Morse approximant VRM, smoothly approach the ideal
high-velocity δ-function result of A ¼ 1 and ε ¼ π=2 as
w → 0; note the fixed-width Gaussian barrier performs
better at w≳ 0.3, but cannot smoothly reach this result. The
parameter z−1 does not drop smoothly to zero, however at
z−1 < 0.2 the skew is barely resolved and the 3-parameter
fit of Eq. (6) effectively overfits in this limit.
In Fig. 5, we analyze the interferometer using the vector

GPE [Eq. (1)] for g ¼ 1, 8, 40, presenting the results as
functions of the ratioΩ1=Ω0 ≡ l=ð2wÞ. Because of the high
computational demands of setting the initial velocities with
our previously employed root-finding algorithm, we use
values determined for Fig. 4 at equivalent widths w for the
Vh barrier. In the ideal limit these velocities are the same,
but otherwise significantly different A and ε values result
for different g. A fully 3D GPE treatment would be even
more demanding, however, a 1D treatment captures the
essential dynamics within an experimentally reasonable
regime [19]. Figure 5(a) shows directly the decrease in

skew for g ¼ 40 as Ω1=Ω0 increases. Figures 5(b)–5(d)
show how the fit-extracted parameters z−1, A, and ε tend
toward the ideal limit as Ω1=Ω0 increases. As in Fig. 3,
solid lines show scalar GPE simulations with fully non-
linear potential Vdðx; jψ j2Þ (shaded areas indicate error
ranges from fitting), again showing excellent agreement.
We require high Ω values to keep internal state dynamics
sufficiently fast relative to the collision duration as Ω1=Ω0

increases (values used are given in the figure caption).
Extension to even higher Ω1=Ω0 values is in principle
enabled by raising Ω further; the physically desirable
strong separation of timescales makes this an increasingly
challenging regime to fully simulate, however. Briefly
considering off-resonant excitation and spontaneous decay,
we similarly note that in the desired regime of operation the
splitting at the barrier is a predominantly linear effect
[11,46]. Therefore, as an approximate model, we numeri-
cally solve the time-independent, three-state linear scatter-
ing problem for an incoming plane wave with wave number
k > 0 in state jg1i, and purely outgoing plane waves in
every other channel. We include loss due to spontaneous
decay from jei by combining an imaginary term with the
detuning, producing −Δ − iΓ=2, where Γ is the excited
state linewidth. With 85Rb parameters corresponding to the
rightmost points in Figs. 5(b)–5(d), we find the effects of
spontaneous decay and realistic detuning (equal to the
linewidth) are negligible at the wave number k required for
equal splitting [50].

FIG. 4. Bright soliton interferometry with the geometric barrier
Vh in the scalar GPE. (a) Transmission at recombination T2

against imposed phase θ for w ¼ 0.01 (blue plus), w ¼ 0.1
(orange triangle), w ¼ 0.2 (green cross), w ¼ 0.4 (red square),
and w ¼ 0.6 (purple diamond). (b)–(d) Fitted values [using
Eq. (6)] of z−1, A, and ε, respectively, for Vh and for the
alternative barrier shapes VRM, Vδ, and VGðσ ¼ 0.2Þ (see text) for
varying w.

FIG. 5. Bright soliton interferometry in the vector GPE
[Eq. (1)]. (a)(i) Transmission at recombination T2 against
imposed phase θ, and (a)(ii) difference from the ideal sinusoid
ζ ¼ T2 − ð1=2Þ½1þ sinðθ − π=2Þ�, for Ω1=Ω0 ¼ 20 (blue plus),
Ω1=Ω0 ¼ 40 (orange triangle), Ω1=Ω0 ¼ 60 (green square), with
g ¼ 40. (b)–(d) Values of z−1, A, and ε, respectively, found by
fitting with Eq. (6) for g ¼ 1, g ¼ 8, g ¼ 40. Solid lines show the
fit to scalar GPE simulations with fully nonlinear barrier
Vdðx; jψ j2Þ and equivalent parameters (shaded areas indicate
error ranges). We use Ω ¼ 104 for Ω1=Ω0 ¼ 10, 20, 30 and Ω ¼
5 × 104 for Ω1=Ω0 ¼ 40, 50, 60, 70 (see text).
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We have described a technique to create a single very
narrow barrier for soliton interferometry using a geometric
scalar potential [21,22], based on two overlapping Hermite-
Gaussian mode laser beams. We used scalar and vector
GPE models to characterize the interferometric behavior of
this barrier, demonstrating how to realize a very narrow
effective barrier using moderately high laser intensity
ratios. Critically, the initial equal splitting of a single
soliton is then a tunneling rather than a velocity filtering
process, and near-unit interferometric contrast is in prin-
ciple achievable. We have also shown a scalar GPE with
correctly chosen nonlinear barrier potential provides an
excellent description of the system, provided the intensity
of the weaker beam is sufficiently high.

Additional data related to the findings reported in this
paper is made available by source [51].
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