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We derive the long-time dynamics of a tracer immersed in a one-dimensional active bath. In contrast to
previous studies, we find that the damping and noise correlations possess long-time tails with exponents
that depend on the tracer symmetry. For generic tracers, shape asymmetry induces ratchet effects that alter
fluctuations and lead to superdiffusion and friction that grows with time when the tracer is dragged at a
constant speed. In the singular limit of a completely symmetric tracer, we recover normal diffusion and
finite friction. Furthermore, for small symmetric tracers, the active contribution to the friction becomes
negative: active particles enhance motion rather than oppose it. These results show that, in low-dimensional
systems, the motion of a passive tracer in an active bath cannot be modeled as a persistent random walker
with a finite correlation time.
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Since Einstein and Smoluchowski, the motion of a tracer
particle in a bath has been a topic of much interest [1]. The
simplest textbook framework models the motion of the
particle as a memoryless Brownian motion using an
underdamped Langevin equation [2–4]. The momentum
autocorrelation function then decays exponentially with a
single timescale, signaling a transition between inertial and
viscous regimes. This was, however, found to be over-
simplistic: the conservation of momentum in the solvent
instead leads to a power-law decay [5–7] and a host of
interesting phenomena—especially in low dimensions—
such as the breakdown of the Fourier law [8–10].
When compared with the equilibrium case, active fluids

reveal a much richer physics, from the ratchet effects
induced by asymmetric gears [11–14] and rectifiers [15–
20] to the long-ranged forces and currents generated by
asymmetric obstacles [20–24]. Over the past two decades,
much activity has been devoted to studying passive tracers
in active baths [25–63]. In the adiabatic limit in which the
bath’s relaxation is much faster than the tracer’s response
[64–71], the tracer’s dynamics is described by a generalized
Langevin equation. In 1D, it reads as

γ0 _XðtÞ þ
Z

t

0

dt0γðt − t0Þ _Xðt0Þ ¼ F ðtÞ þ ηðtÞ; ð1Þ

where the interactions with the active particles lead
to a stochastic force F ðtÞ and a retarded frictionR
t
0 dt

0γðt − t0Þ _Xðt0Þ. Equation (1) also includes a memory-
less viscous medium at temperature T that leads to the
friction coefficient γ0 and a Gaussian white noise ηðtÞ
satisfying hηðtÞηðt0Þi ¼ 2γ0Tδðt − t0Þ. Despite many
efforts, a single unifying picture for the friction γðtÞ and

the force-force correlation functions CF ≡ hF ðtÞF ð0Þic
does not emerge from the existing results.
First, a large class of experimental and numerical studies

has suggested that the random, finite-duration encounters
between the bath particles and the tracer lead to an
exponential decay of γðtÞ over a short timescale [25–35].
Equation (1) then reduces to ðγ0 þ γTÞ _XðtÞ ¼ F ðtÞ, where
γT ≡ R

∞
0 dtγðtÞ. In this case, similarly to an underdamped

Brownian particle, the large-scale motion of the tracer is
diffusive. This has been justified analytically in the simple
case of a tracer connected by linear springs to a bath of
active Ornstein-Uhlenbeck particles [72]—an active
counterpart to the celebrated work of Vernon and
Feynman [73–75].
In contrast, a second class of experiments and models on

so-called wet-active matter suggests a more complex
physics [37,41,43,45,50,55,59]. The long-ranged decay
of hydrodynamic interactions can indeed turn γðtÞ and
CF ðtÞ into power laws [37,45,59]. These may lead to
anomalous diffusion on intermediate timescales but, ulti-
mately, lead to long-time diffusion.
We note, however, that long-time tails are generic, even

in the absence of hydrodynamic interactions. Indeed, the
fluctuating density of active particles is a conserved
quantity—and hence a slow field—so that the bath cannot
have a single characteristic relaxation time. This leads to
power-law memory and correlations, as already noted
for equilibrium [6,7,76,77] and nonequilibrium [78,79]
systems, including phoretic colloids [80] and driven
tracers [81,82]. In low-dimensional systems, these tails
may result in anomalous transport over long timescales
[80,81]. Although thoroughly studied in other contexts,
these effects were so far overlooked for tracers in dry
active baths.
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In this Letter, to resolve this issue, we consider the
simplest nontrivial system in which Eq. (1) can be
systematically derived: a single tracer immersed in a dry
one-dimensional active bath of run-and-tumble particles.
To remain as close as possible to the phenomenology of an
active bath in d > 1 dimensions, we allow particles to
overtake each other and the tracer, hence modeling the
latter by a soft repulsive potential VðxÞ; see Fig. 1. Starting
from the coupled dynamics of the bath particles and tracer
positions, fxiðtÞ; XðtÞg, we determine explicitly the long-
time behaviors of γðtÞ and CF ðtÞ as functions of the tracer
shape and of the microscopic parameters of our model. To
do so, we employ a controlled adiabatic expansion [83,84]
valid in the large γ0 limit in which the tracer dynamics can
be described by Eq. (1). Our results show the emergence of
long-time tails that lead to interesting and qualitatively
different behaviors for symmetric and asymmetric tracers.
For generic, asymmetric tracers, ratchet effects make γðtÞ
and CF ðtÞ scale as ∼t−1=2 in the long-time limit, leading to
superdiffusive behavior around their mean displacements:

hX2ðtÞic ≡ hX2ðtÞi − hXðtÞi2 ∼ Kt3=2: ð2Þ

When the tracer is towed at a constant velocity U, it
experiences a friction force from the active particles that
grows as

ffricðtÞ
U

∼ −ΓTt1=2: ð3Þ

We provide below explicit expressions for K and ΓT in the
presence of a soft asymmetric potential in a dilute active
bath. In the singular limit of a symmetric tracer, CF ðtÞ and
γðtÞ scale as ∼t−3=2, similar to a tracer in a bath of
equilibrium Brownian particles [76,85], which yields a
diffusive behavior:

hX2ðtÞic ∼ 2Dt: ð4Þ

Towing the tracer at constant velocityU, the active particles
exert a finite friction force:

ffricðtÞ
U

¼ −γT − γ1t−1=2 þOðt−3=2Þ; ð5Þ

where γT ≡ R
∞
0 dt γðtÞ. Interestingly, for small tracer sizes,

γT and γ1 are negative: the active bath pushes the tracer in
the towing direction. We provide perturbative expressions
for D and γT and defer their systematic derivations for later
work [86]. All our results are confirmed by microscopic
simulations shown in Fig. 2. The derivation presented
below suggests that the exponents are universal to any bath
with long-time diffusive statistics. We confirm that they
hold in the presence of soft repulsive interparticle forces in
Sec. I of the Supplemental Material [87].
Model.—We consider bath particles moving with speed v

and randomly switching their orientations with rate α=2,
leading to a persistence length lp ¼ v=α. The tracer
interacts with the active bath via a short-range potential
V which vanishes outside ½0; LT �, such that the force on
bath particle i is fðxi − XÞ ¼ −∂xiVðxi − XÞ and the tracer
size is LT . We take jμfðxÞj < v so that particles are able to
cross the tracer, which emulates the channel in Fig. 1(a).
The tracer and bath-particle dynamics thus read as

(a) (b)

FIG. 1. (a) A large tracer and a bath of small active particles are
immersed in a viscous medium inside a long narrow channel.
(b) The short transverse dimension allows one to model the
channel as a one-dimensional system where particles can bypass
each other and the tracer, even though the transverse and
orientational fluctuations of the tracer are lost in this one-
dimensional description. Top: asymmetric tracer. Bottom: sym-
metric tracer.

FIG. 2. Simulation results (symbols) compared with our theo-
retical predictions for the long-time limit, without any fitting
parameters, (dashed black lines): (a) mean squared displacement
for symmetric and asymmetric tracers; (b) friction force exerted
on an asymmetric tracer; (c) symmetric-tracer friction coefficient
vs tracer size LT . Simulation details and results for soft repulsive
interactions are given in Sec. I of the Supplemental Material [87].
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γ0 _XðtÞ ¼ FtotðtÞ≡ −
X
i

f½xiðtÞ − XðtÞ�; ð6Þ

_xiðtÞ ¼ vσiðtÞ þ μf½xiðtÞ − XðtÞ�; ð7Þ

where the σiðtÞ ∈ f�1g flip independently with rate α=2
and μ is the bath-particle mobility. In Eqs. (6) and (7) we
neglected the thermal noises acting on the tracer and bath
particles, which are typically much weaker than the active
and viscous forces [25,26,34,38,89]. (See Sec. V of the
Supplemental Material [87] for a discussion of the T ≠ 0
case.) In the analytical derivations below we consider
a dilute bath of active particles, without interparticle
forces, in either infinite systems or periodic ones of size
L ≫ LT;lp.
Theory.—The fluctuating force FtotðtÞ differs from the

average force F exerted on a tracer held fixed. This is due to
both the tracer’s motion and the stochasticity of the active
bath. The average correction due to the tracer motion is
characterized by γðtÞ in Eq. (1). Within an adiabatic
perturbation theory γðtÞ is defined as

hFtotðtÞi − F≡ −
Z

t

0

dt0γðt − t0Þ _Xðt0Þ; ð8Þ

where the average is conditioned on a given realization of
_XðtÞ. The fluctuations of Ftot are then characterized through

F ðtÞ≡ FtotðtÞ þ
Z

t

0

dt0 γðt − t0Þ _Xðt0Þ: ð9Þ

Adiabatic perturbation theory tells us that, when γ0 is large,
the statistics of F ðtÞ are identical to those of the force
exerted on a tracer held fixed [84]. Furthermore, it relates
γðtÞ andF ðtÞ through an Agarwal-Kubo-type formula [83]:

γðt − t0Þ ¼ hF ðtÞ∂X0
ln ρs½xðt0Þ − X0; σðt0Þ�is: ð10Þ

Here, ρsðx − X0; σÞ is the steady-state density of bath
particles with orientation σ and displacement x − X0 from
a tracer held fixed at X0. The brackets h·is represent an
average with respect to ρs. In the following, we set X0 ¼ 0
without loss of generality. For an equilibrium bath at
temperature T, hF ðtÞis ¼ 0 and Eq. (10) reduces to the
fluctuation-dissipation theorem (FDT) γðtÞ ¼ CF ðtÞ=T
where CF ðtÞ ¼ hF ðtÞF ð0Þis. Outside equilibrium, these
constraints need not hold.
To characterize the tracer dynamics, we compute inde-

pendently F ¼ hF ðtÞis, CF ðtÞ, and γðt − t0Þ. To do so, we
start from the expression for the steady state of non-
interacting run-and-tumble particles in the presence of an
external force fðxÞ [90,91]:

ρsðx; σÞ ¼
1
2
ρL

1þ σ μ
v fðxÞ

exp

�
βeff

Z
x

0

dy
fðyÞ

1 − ½μv fðyÞ�2
�
;

ð11Þ

where ρL is the particle density at x ¼ 0−, Teff ¼ v2=μα is
the effective temperature, and βeff ¼ 1=Teff . The steady-
state density is ρsðxÞ ¼

P
σ ρsðx; σÞ.

Asymmetric tracer.—For an asymmetric tracer, the
densities of active particles ρR and ρL at the right and
left ends of the tracer differ and are given by ρR ¼
2ρ0=½1þ exp ðβeffεÞ� and ρL ¼ 2ρ0=½1þ exp ð−βeffεÞ�,
where ε≡ −

R
dx fðxÞ=f1 − ½μfðxÞ=v�2g. The density dif-

ference then leads to a nonvanishing average force F ¼
−
R
dxfðxÞρsðxÞ exerted on the tracer [21,92,93], which is

given by

F ¼ −TeffðρR − ρLÞ ¼ 2Teffρ0 tanh

�
ε

2Teff

�
; ð12Þ

where we have introduced the average background density
ρ0 ¼ ðρR þ ρLÞ=2. Note that Eq. (12) is consistent with the
ideal gas law applied to the left and right sides of the tracer.
The long-time behavior of CF ðtÞ and γðtÞ can be derived

from the knowledge of the propagator pðx; σ; tjx0; σ0; 0Þ. In
the long-time limit, the dynamics of the active particles are
diffusive so that the support of pðx; σ; tjx0; σ0; 0Þ spreads
over a region of length 2bðtÞ around x0, where bðtÞ ∼
ðπDefftÞ1=2 is a diffusive propagating front. For any x−
x0 ≪ bðtÞ, and to leading order in bðtÞ, pðx; σ; tjx0; σ0; 0Þ
has relaxed to the normalized steady-state distribution

ρsðx; σÞ=
P

σ

R bðtÞ
−bðtÞ dx ρsðx; σÞ. For LT ≪ 2bðtÞ, one can

neglect the region inside the tracer in the integral so thatP
σ

R bðtÞ
−bðtÞ dx ρsðx; σÞ ∼ ðρR þ ρLÞbðtÞ, up to corrections of

order OðL−1Þ. Since bðtÞ ∼ ðπDefftÞ1=2 we get

pðx; σ; tjx0; σ0; 0Þ ∼ ρsðx; σÞ
ρR þ ρL

ðπDefftÞ−1=2: ð13Þ

This heuristic result can be derived exactly, within the
adiabatic limit, and its subleading correction can be shown
to scale as Oðt−3=2Þ (See Sec. II of the Supplemental
Material [87]).
On long times, pðx; σ; tjx0; σ0; 0Þ is independent of the

initial coordinate ðx0; σ0Þ. Therefore, two-point correlations
are factorized in this limit. Furthermore, for N noninter-
acting particles, the forces exerted by different parti-
cles on the tracer are uncorrelated so that CF ðtÞ ¼
NfhfðtÞfð0Þis − ½hfðtÞis�2g, where fðtÞ is the force due
to a single bath particle. Since hfðtÞis ¼ F=N, N½hfðtÞis�2
only contributes a correction of order OðL−1Þ to CF ðtÞ.
Using Eq. (13), CF ðtÞ can then be evaluated as
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CF ðtÞ ¼
X
σσ0

Z
dxdx0fðxÞpðx; σ; tjx0; σ0; 0Þfðx0Þρsðx0; σ0Þ

ð14Þ

¼ F2

ρR þ ρL
ðπDefftÞ−1=2 þOðt−3=2Þ: ð15Þ

Similarly, we obtain from Eqs. (10) and (12)

γðtÞ¼
X
σσ0

Z
dxdx0fðxÞpðx;σ; tjx0;σ0;0Þ∂x0ρsðx0;σ0Þ ð16Þ

¼ βeff
F2

ρR þ ρL
ðπDefftÞ−1=2 þOðt−3=2Þ: ð17Þ

Remarkably, the long-time regime satisfies an effec-
tive FDT γðtÞ ¼ βeffCF ðtÞ þOðt−3=2Þ. We also note that
Eqs. (11)–(17) hold in the infinite-system-size limit. For
large-but-finite systems, they are complemented byOðL−1Þ
corrections, as discussed in Sec. III of the Supplemental
Material [87].
Equations (15) and (17) immediately show that the

asymmetric tracer undergoes anomalous dynamics on long
times. Indeed, the noise and friction intensities, defined as
I ¼ R

∞
0 dtCF ðtÞ and γT ¼ R

∞
0 dtγðtÞ are infinite, hence

leading to an ill-defined diffusivity D≡ I=ðγ0 þ γTÞ2. To
characterize the anomalous dynamics of the tracer we first
consider its free motion. We define the tracer’s mobility
BðtÞ through XðtÞ ¼ R

t
0 dt

0Bðt − t0ÞF ðt0Þ, which leads to

hXðtÞ2ic ¼ 2

Z
t

0

dt1

Z
t1

0

dt2Bðt1ÞBðt2ÞCF ðt1 − t2Þ: ð18Þ

Since we are working in the large γ0 limit, BðtÞ ∼ 1=γ0 [94].
Using Eq. (15) forCF ðtÞ then gives Eq. (2), hence implying
superdiffusion, with

K ¼ 4F2

3ρ0γ
2
0

ffiffiffiffiffiffiffiffiffiffiffi
πDeff

p : ð19Þ

In addition to anomalous diffusion, the asymmetric
tracer experiences friction that grows with time, as shown
by the following towing experiment. Setting a constant
velocity _X ¼ U in Eq. (1), the friction exerted by the active
particles on the tracer can be measured as ffricðtÞ≡
hFtoti − F. From Eqs. (8) and (17), we get

ffricðtÞ ¼ −U
Z

t

0

dt0 γðt0Þ ∼ −U
F2

Teffρ0

�
t

πDeff

�
1=2

; ð20Þ

which yields Eq. (5) with ΓT ¼ F2ðπDeffÞ−1=2=Teffρ0.
Symmetric tracer.—For a symmetric tracer, F ¼ 0.

Equations (15) and (17) then imply that γðtÞ,
CF ðtÞ ¼ Oðt−3=2Þ. In this case, I and γT remain finite so

that D ¼ I=ðγ0 þ γTÞ2 is well defined and Eq. (4) holds.
We now present heuristic discussions of CF ðtÞ and γðtÞ that
account for two important features: their scaling as t−3=2

and their sign changes for small tracers. These results can
be derived exactly, within the adiabatic limit, for piecewise
linear potentials [86].
Consider a symmetric tracer of length LT whose poten-

tial is depicted in Fig. 3. While our results can be derived
exactly [86], we present here a simple argument which
holds in the limit in which the edges of the tracer have a
small width d and small slopes �f0. Consider first a single
particle located at the left end of the tracer, at x̂ ≃ 0, moving
in the direction σ̂. At long times, the probability distribution
of its position x is a Gaussian centered around σ̂lp, of
variance 2Defft (see Fig. 3). The force-force correlation of
this particle can be computed as

cðσ̂; tÞ ¼ f20dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDefft

p ½e−
l2p

4Deff t − e−
ðLT−σ̂lpÞ2

4Deff t �; ð21Þ

as can be inferred from Eq. (14) using ρsðx0; σ0Þ ¼
δðx0Þδσ0;σ̂ . Note that the factor d comes from the integration
over x in Eq. (14), which also leads to the two exponentials
corresponding to x ≃ 0 and x ≃ LT , respectively. This
amounts to summing the contribution due to particles retu-
rning to the left end, such that fðxÞfðx0Þ ¼ f20, and that of
particles crossing the tracer, such that fðxÞfðx0Þ ¼ −f20.
Let us return to the case of an active bath of density ρ0.

We denote by m the polarization of particles around
x0 ¼ 0 so that the local density of particles with orienta-
tion σ is ρ0½ð1þ σmÞ=2�. The force-force correlation is
then obtained from the single-particle result through
CF ðtÞ ¼ 2ρ0f½ð1 þ mÞ=2�cð1; tÞ þ ½ð1 − mÞ=2�cð−1; tÞg,
where the factor 2 stems from the contributions of particles
starting at x0 ≃ LT . Expanding the exponentials in Eq. (21)
in the long-time limit, one finds the leading orders cancel,

FIG. 3. Consider a symmetric tracer (blue potential) and an
active particle located at its left end at position x̂ at t ¼ 0. The
particle is shown in orange and magenta for σ̂ ¼ �1 respec-
tively. At late times, the particle position is distributed as a
Gaussian centered around xc ¼ x̂þ σ̂lp. For σ̂ ¼ 1, when
lp ≫ LT , the anticorrelation between fðx0Þ and fðxÞ leads to
a negative contribution to CF ðtÞ. Conversely, a σ̂ ¼ −1 particle
leads to a positive contribution to CF . Due to the polarization
against the potential, σ̂ ¼ �1 occur with different probabilities.
This leads to an overall negative CF ðtÞ for small LT and a
positive one for large sizes.
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yielding the t−3=2 scaling of CF ðtÞ. Using Eq. (11) leads to
m ¼ μf0=v, which is consistent with the fact that
active particles polarize against external potentials [95].
Straightforward algebra then gives

CF ðtÞ ∼
ρ0ðf0dLTÞ2

4π1=2ðDefftÞ3=2
Gðlp=LTÞ ð22Þ

where GðyÞ ¼ 1 − ð2μf0=vÞy. Importantly, CF ðtÞ be-
comes negative when the size of the tracer is small,
LT ≤ 2μlpf0=v. In the discussion above, we neglected
Oðf0Þ corrections to the propagator and to the steady-state
density due to the edges of the tracer. Including the f0
corrections to all orders confirms the scaling [Eq. (22)], to
order Oðd2Þ, albeit with GðyÞ ¼ ½1 − ð2μf0y=vÞ2�=½1 −
ðμf0=vÞ2�2 (see Sec. IV of the Supplemental Material
[87]). This does not change the leading order estimate
for the crossover length ∼2μf0lp=v. Negative autocorre-
lations have been reported in other contexts, in [7] and out
[80] of equilibrium. Here, it is a direct consequence of the
polarization against the potential. Setting m ¼ 0 in the
computation above always leads to CF ðtÞ > 0.
We now turn to the long-time behavior of γðtÞ. Inserting

Eq. (11) in Eq. (10) leads to γ ¼ γp − γa, with

γpðt − t0Þ≡ βeff

�
F ðtÞ F ðt0Þ

1 − ½μvF ðt0Þ�2
�

c

; ð23Þ

γaðt − t0Þ≡ βeff

�
F ðtÞ σðt

0Þlp∂xðt0ÞF ðt0Þ
1 − σðt0Þ μvF ðt0Þ

�
c

: ð24Þ

The heuristic argument developed above for CF ðtÞ directly
extends to the correlators (23) and (24), showing that γa and
γp both inherit the t−3=2 scaling of CF ðtÞ at long times.
Inspecting Eq. (23) shows that, to leading order in f0,

γpðtÞ ∼ βeffCF ðtÞ ¼
βeffρ0ðf0dLTÞ2
4π1=2ðDefftÞ3=2

Gðlp=LTÞ: ð25Þ

Equation (25) is nothing but an effective FDT for the
passive tracer. Our results show that the FDT is only
expected to hold for small f0 and should be generically
violated when γa is not negligible compared with γp.
The presence of σðt0Þ in Eq. (24) makes the contribu-

tions of σ0 ¼ �1 particle add up, instead of canceling,
leading to γaðtÞ > 0 for all LT and a long-time scaling
γa ∼Oðf30Þt−3=2. Therefore, to leading order in f0,
γ ∼ βeffCF ðtÞ. This suggests that γT ¼ R

∞
0 dtγðtÞ can also

change sign and become negative for small tracers. Indeed, a
perturbative calculation finds that

γT ∼ βeffv−1ρ0ðf0dÞ2
LT

lp

�
1 −

d2 þ 6l2
p

3dLT

�
: ð26Þ

The derivations of this result and of the asymptotics of γa are
not particularly illuminating; they are deferred to Sec. IVof
the Supplemental Material [87]. Importantly, Eq. (26)
implies that when a small symmetric tracer is dragged at
velocity U, the active bath enhances its motion rather than
resisting it.
Adiabatic limit.—Although Eq. (1) is a common frame-

work to describe a tracer’s dynamics, it relies on the
assumption that the motion is slow. An important—but
rarely debated—question is thus its range of validity. Here,
this is set by the requirement that the tracer’s response is
much slower than the diffusive relaxation of the bath, i.e.,

hXðtÞi, hX2ðtÞi1=2c ≪ ðDefftÞ1=2. For an asymmetric tracer,
using hXðtÞi ∼ Ft=γ0 and Eq. (2), we find t ≪ τ1≡
Deffðγ0=FÞ2 and t ≪ τ2 ≡ ðDeff=KÞ2. Equation (19)
implies τ1 ≪ τ2 so that the adiabatic limit holds up to
t ≪ τ1. Beyond this timescale, which can be arbitrarily
large, an asymmetric tracer in an active bath cannot be
described by Eq. (1). Considering a finite system of size L,
the diffusive relaxation time is t ¼ τrel ∼ L2=Deff . Thus, the
adiabatic limit for an asymmetric tracer in a finite system is
valid for FL ≪ Deffγ0, which can be achieved by designing
the tracer shape to bound F or by using a small enough
system. For a symmetric tracer, there is no temporal
restriction, and the only requirement is D ≪ Deff , which
can be fulfilled by setting γ0 ≫ ðI=DeffÞ1=2. For towing
both asymmetric tracers and symmetric tracers at constant
velocity U, the only requirement is U ≪ Deff=L.
Conclusion.—In this Letter, we have derived the long-

time dynamics of a passive tracer in a dilute active bath
under the sole assumption of an adiabatic evolution. We
have revealed new regimes for both asymmetric and
symmetric tracers. First, ratchet effects generically lead
to the superdiffusion of asymmetric tracers, which also
experience friction that grows with time when they are
dragged at constant velocity U. For symmetric tracers, the
long-time tail preserves the diffusive behavior, but neg-
ative active friction is observed for small tracers. The
latter solely follows from the persistent motion of active
particles and their polarization by external potentials, a
mechanism that differs from previously studied cases with
negative mobility [72,96,97]. We expect the tails for
asymmetric and symmetric tracers to become t−d=2 and
t−ðd=2þ1Þ in d dimensions, respectively. This suggests, in
two dimensions, that hXðtÞ2ic ∼ t ln t for an asymmetric
tracer, which remains to be verified. Our results stem
from generic features of dry active particles and should
thus hold generically. The exponents are expected to be
universal, but the transport coefficients can be dressed, for
instance, by interactions. Moreover, the mechanisms
should lead to even richer behaviors for active suspen-
sions in momentum-conserving fluids [37,45,50,59], or in
the presence of phoresis [80].
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