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Junctions composed of two crossed graphene nanoribbons (GNRs) have been theoretically proposed as
electron beam splitters where incoming electron waves in one GNR can be split coherently into propagating
waves in two outgoing terminals with nearly equal amplitude and zero back-scattering. Here we scrutinize
this effect for devices composed of narrow zigzag GNRs taking explicitly into account the role of Coulomb
repulsion that leads to spin-polarized edge states within mean-field theory. We show that the beam-splitting
effect survives the opening of the well-known correlation gap and, more strikingly, that a spin-dependent
scattering potential emerges which spin polarizes the transmitted electrons in the two outputs. By studying
different ribbons and intersection angles we provide evidence that this is a general feature with edge-
polarized nanoribbons. A near-perfect polarization can be achieved by joining several junctions in series.
Our findings suggest that GNRs are interesting building blocks in spintronics and quantum technologies
with applications for interferometry and entanglement.
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Graphene is an exceptional material with attractive
properties to explore fundamental physics and for use in
technological applications [1]. While ideal graphene is
nonmagnetic, custom-shaped graphene nanostructures can
be designed to exhibit complex magnetic phenomenology
with promising possibilities for a new generation of nano-
scale spintronics devices [2,3]. In fact, graphene π magnet-
ism is more delocalized and isotropic than conventional
magnetism arising from d or f orbitals, which makes it
electrically accessible [4] and stable even at room temper-
ature [5]. The intrinsically weak spin orbit and hyperfine
couplings in graphene lead to long spin coherence and
relaxation times [6] as well as a long spin-diffusion length
that is expected to reach ∼10 μm even at room temperature
[7]. This makes graphene an interesting platform for
designing functionalities such as spin filters [8–11], spin
qubits [12,13], and electron quantum optics setups [14].
Graphene nanoribbons (GNRs) have emerged as par-

ticularly attractive building blocks for molecular-scale
electronic devices because they inherit some of the

exceptional properties from graphene while having tunable
electronic properties, such as the band gap dependency on
theirwidth and edge topology [8].With the advent of bottom-
up fabrication techniques, longdefect-free samples of narrow
GNRs can now be chemically produced via on-surface
synthesis as demonstrated in the seminal works for armchair
[15] and zigzag (ZGNR) [16] ribbons. Furthermore, manipu-
lation of GNRs with scanning tunneling probes [17,18]
opens the possibility to build two-dimensional multiterminal
graphene-based electronic circuits [19], where their spin
properties can be addressed by using spin-polarized tips [20]
and probed by shot noise measurements [21].
Indeed, electron transport in GNR networks has been

theoretically explored with the Landauer-Büttiker formal-
ism [22] for a rich variety of multiterminal device con-
figurations [23–26]. Most recently, crossed GNR junctions
have been proposed as electron beam splitters for electron
quantum optics [27–29]. In these works it was found that
by placing one GNR on top of another with a relative angle
of 60° the electron transfer process between the ribbons is
strongly enhanced. This enables one to split incoming low-
energy electron waves between two outgoing ports with a
tunable ratio and negligible reflection probability, an effect
with roots in valley (chirality) preservation in the low-
energy bands of ZGNRs [30,31]. However, since ZGNRs
develop spin-polarized edge states, as theoretically [32] and
experimentally [5,33] demonstrated, one may expect that
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Coulomb repulsion could give rise to additional interesting
features for the charge and spin transport in crossed
ZGNRs. For instance, it has been shown that the intro-
duction of one rough zigzag edge can be used to boost spin
injection [34].
In this Letter, we analyze the electronic structure and

quantum transport properties of junctions composed of two
infinite ZGNRs crossed with a relative angle of 60° using the
mean-field Hubbard (MFH) model in combination with
nonequilibrium Green’s functions (NEGF) to describe the
open quantum systems [35]. We show how the Coulomb
repulsion opens a transport band gap and generates a spin-
dependent scattering potential in the junction, which enables
the devices to be operated as a spin-polarizing beam splitter.
For a transparent analysis and efficient numerics we use

the Hubbard Hamiltonian [36] within the mean-field
approximation, well suited to describe sp2 carbon systems
[2], for both semi-infinite electrodes and device region as
shown in Fig. 1, i.e.,

HMFH ¼
X

ij;σ

tijc
†
iσcjσ þ U

X

i;σ

niσhniσ̄i: ð1Þ

Here ciσ is the annihilation operator of an electron at site i
with spin σ ¼ f↑;↓g and niσ ¼ c†iσciσ the corresponding
number operator. The matrix element tij is computed by a
two-center integral based on a Slater-Koster parametriza-
tion as explained in Ref. [29], and U accounts for the
Coulomb interaction between two electrons occupying
the same pz orbital. We fix U ¼ 3 eV which is in the
typical range that yields a good agreement with ab initio
calculations [2,9,11,37,38]. The open system described
by Eq. (1) is solved self-consistently using the NEGF
method [35,39,40] as detailed in the Supplemental
Material [41]. The corresponding many-electron state
thus takes the form of a single Slater determinant of
the occupied single-particle states from the MFH-NEGF
equations.
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FIG. 1. Transport setup and spin-dependent properties for AB-stacked 8-ZGNR devices. (a),(b) Two different self-consistent solutions
for the spin-density distribution in the device region, labeled ↑↓ and ↑↑ , respectively, defined by the spin orientation of the lower edge
of each GNR. The up (down) spin density is shown in red (blue). The lower, horizontal ribbon is plotted in black, while the upper,
intersecting at an angle of 60°, is depicted in gray. Electrodes 1–4 are indicated. The ribbons are separated by a distance d ¼ 3.34 Å
along the z axis, as displayed in the side view [lower part of (b)]. The dashed lines in each configuration indicate a symmetry axis that
maps the device geometry to itself through mirror operations, where the red (black) color of the axis further indicates that the spin index
is inverted (conserved) by the symmetry operation. (c),(d) Spin-resolved density of states of scattering states incoming from electrode 1
for the ↑↓ and ↑↑ spin configuration, respectively, computed at E − EF ¼ 0.5 eV. The dominant spin on each site at this energy is
shown in red for up spins and in blue for down spins. (e),(f) Sketch of incoming and outgoing waves through the scattering center
(represented by the circled cross) and the corresponding transmission probabilities from calculations.
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Figure 1(a) shows the device structure for two AB-stacked
ZGNRs, each with a width of 8 carbon atoms (8-ZGNRs). In
principle, away from the crossing (but within the spin
correlation length), each of the four electrodes can be imposed
one of the two possible symmetry-broken spin configurations
at the edges, leading to 24=2 ¼ 8 unique boundary conditions
for the device region. The self-consistent solutions to this
problem are shown in Figs. S6 and S7 of the Supplemental
Material [41] forAB- andAA-stacked junctions, respectively,
along with the electronic energy differences. The spin
configurations for the two lowest-energy states with AB
stacking are shown in Figs. 1(a) and 1(b). In the followingwe
label these as ↑↓ and ↑↑ , where the first (second) arrow
refers to the spin orientation of the lower edge of the
horizontal (inclined) GNR. Although the electronic energy
of ↑↑ is found to be 82 meV above that of ↑↓ with AB-
stacking, it is interesting to consider both configurations as
this (constant) energy penalty may be compensated by a
(length-dependent) energy preference for a certain polariza-
tion on the extended GNRs through interactions with their
environment.
The spin- and energy-resolved transmission probability

between any pair of electrodes can be computed from
Tσ
αβ ¼ Tr½GσΓασG

†
σΓβσ�, where Gσ is the device Green’s

function and Γασ ¼ iðΣασ − Σ†
ασÞ the broadening matrix

related to the self-energy Σασ from electrode α and for spin
orientation σ [22,39]. Similarly, the site-resolved density of
scattering states can be computed as Aασ ¼ GσΓασG

†
σ.

Figures 1(c) and 1(d) show the spatial distribution of the
scattering states incoming from electrode 1 in the con-
duction band. At each lattice site the disk size is propor-
tional to the density of states (summed over spin) while its
color indicates the local majority spin. The electron energy
is chosen at E ¼ 0.5 eV above the Fermi energy EF ¼ 0,
i.e., slightly away from the window with edge states.
This implies mode propagation involving only a single
GNR subband (Supplemental Material, Figs. S3 and S4
[41] ), as well as robustness against edge disorder [49].
Figures 1(c) and 1(d) also illustrate how the transmitted
wave—for both spin configurations ↑↓ and ↑↑—is split
into electrodes 2 and 3 with negligible reflection and
amplitude in electrode 4, as expected for the beam splitter.
Conceptually, this is expressed with the representation in
Figs. 1(e) and 1(f), along with the computed transmission
probabilities.
Remarkably, ↑↓ and ↑↑ differ substantially when one

considers the spin-resolved transmissions.Whereas ↑↓ does
not polarize the current, since the transmission probabilities
for both spin channels are equal, the ↑↑ configuration leads

to a ratio of T↓
12=T

↑
12 ¼ 0.4, i.e., a spin-filtering effect.

For further quantitative analysis, Fig. 2 reports the spin-
and energy-resolved transmission and reflection probabil-
ities for an electron injected from terminal 1 into the ↑↓

[Figs. 2(a)–2(d)] and ↑↑ [Figs. 2(e)–2(h)] configurations.
For comparison, each panel includes the corresponding
results for the unpolarized device (U ¼ 0, dashed gray
lines) reported previously [29]. The introduction of
Coulomb repulsion has two direct consequences: (i) it
opens a transport gap near zero energy due to polarization
of the edge bands, and (ii) it shifts the states at the Brillouin
zone boundary (Figs. S3 and S4 of the Supplemental
Material [41]) resulting in the formation of two transverse
modes at very low energy. While the beam-splitting effect
in the two-mode energy range is hampered by substantial
scattering and reflection [Figs. 2(d) and 2(h)], it is com-
pletely restored in the energy range with only a single
mode, i.e., 0.4 eV < jEj < 1.3 eV, a condition already
identified for unpolarized devices [29]. In fact, the trans-
mission properties for ↑↓ coincide there with those of the
unpolarized device [Figs. 2(a)–2(d)]. On the other hand, for
the ↑↑ configuration the probabilities T12 and T13 show a
strong spin splitting [Figs. 2(e)–2(h)], revealing that the
spin-filtering effect emphasized in Figs. 1(d) and 1(f) exists
for the whole band.

(a) (e)

(b) (f)

(c) (g)

(d) (h)

FIG. 2. Spin- and energy-resolved transmission probabilities
T12, T13, T14 and reflection R1 for (a)–(d) the ↑↓ and (e)–(h) ↑↑
configurations of Fig. 1. Electrons are injected from electrode 1.
The red (blue) curves correspond to the up (down) spin
components with U ¼ 3 eV. For comparison, the corresponding
calculations for the unpolarized case (U ¼ 0) are indicated by
dashed gray lines.
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This qualitative difference between ↑↓ and ↑↑ can
be understood by considering the different symmetries
that apply to these two configurations. Geometrically,
the considered AB-stacked structure possesses one mir-
ror-symmetry plane as shown by the dashed lines in
Figs. 1(a) and 1(b) [29]. The difference emerges when
one considers symmetry lowering by the spin polarization:
For ↑↓ the spin index maps into the opposite through the
mirror operation (red axis) while for ↑↑ the spin index is
conserved. More specifically for ↑↓ , these spatial sym-
metries impose constraints in the transmission probabilities
between the spin channels, e.g., that Tσ

12 ¼ T σ̄
43, T

σ
13 ¼ T σ̄

42,
etc. Further, considering probability conservation for
injection from electrodes 1 or 2, one has the relations
Tσ
12 þ Tσ

13 ¼ T σ̄
21 þ T σ̄

24 ¼ 1 (valid when Rσ
1 ¼ Tσ

14 ¼
Rσ̄
2 ¼ T σ̄

23 ¼ 0). Together with time-reversal symmetry
(Tσ

ij ¼ Tσ
ji) it follows that Tσ

12 ¼ T σ̄
12 in the case of

↑↓ , i.e., that the transmissions are spin independent.
For ↑↑ no such condition applies, and the spin channels
are decoupled and the transmission probabilities may
be very different. Indeed, this is directly seen in our
calculations.
If we consider junction imperfections the aforemen-

tioned symmetry constraint would be absent and the
spin-polarizing effect no longer symmetry forbidden. To
examine the relationship between geometry and transport

properties we use as a measure the spin polarization in the
transmission between a pair of electrodes:

Pαβ ¼
T↑
αβ − T↓

αβ

T↑
αβ þ T↓

αβ

: ð2Þ

Figure 3 shows P12 at E ¼ 0.5 eV as a function of in plane
translations of one ribbon with respect to the other for both
↑↓ and ↑↑ configurations. The AB- and AA-stacked
geometries are indicated with symbols in the density plots.
Evidently, away from these high-symmetry situations the
spin-polarizing effect is generally present. The same con-
clusion holds true also for a range of twist angles
(Supplemental Material, Sec. S11 [41]).
At this point it should be noted that it may be difficult to

prepare the device in one specific spin configuration, such
as the low-energy states ↑↓ and ↑↑ discussed up to now.
For instance, it is not possible to tune which one is the

FIG. 3. Spin polarization P12 of the current from electrode
1 to 2 as a function of in plane translations of one ribbon with
respect to the other for (a) ↑↓ and (b) ↑↑ configurations
introduced in Fig. 1. The electron energy is in the conduction
band at E ¼ 0.5 eV. The in plane unit cell (dashed lines) has
lattice vectors a1 and a2, where a0 ¼ 2.46 Å is the graphene
lattice constant. The red crosses (green disks) indicate the high-
symmetry configurations with AB (AA) stacking.

(a)

(b)

FIG. 4. (a) Sketch of an array of three consecutive AB-stacked
8-ZGNR crossings to enhance the spin-polarized current at the
output electrode 2. (b) Spin polarization P12ðNÞ (filled symbols)

and majority-spin transmission Tmaj
12 ðNÞ (open symbols) as a

function of the number of crossings N between terminals 1 and 2
in the conduction band at E ¼ 0.5 eV. Two different scenarios
are considered: an ideal arrangement of identical ↑↑ AB cross-
ings (blue circles) as well as a random sampling (orange squares)
over 107 different spin, intersection angle (within 55–65°), and
translation configurations drawn from the data in the Supple-
mental Material, Sec. S11 [41], assuming equal weights. The
average polarization hjP12ðNÞji follows an analytic expression
(black line, Supplemental Material, Sec. S12 [41]) approaching 1
exponentially in

ffiffiffiffi
N

p
. The gray lines indicate the best (1st, 5th,

10th, 25th, 50th) percentiles of the random distribution.
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energetically lower (and thus at low temperatures thermally
stable) state by a homogeneous magnetic field as the
Zeeman energy is the same for both solutions. On the
other hand, transverse electric fields across the individual
electrodes [8] or injection of spin-polarized currents at the
edges from the tip of a STM [50] could potentially be
strategies to control their magnetization. Nevertheless, our
fundamental assumption is that the different collective spin
states of the device are sufficiently long lived and robust to
be probed by a transient current pulse. This assumption is
supported by the fact that our calculations predict that the
electronic energy is increased by about 0.20 eV when a
magnetic domain wall is inserted into an 8-ZGNR
(Supplemental Material, Figs. S6 and S7 [41]), an indica-
tion of a very large barrier even compared to room
temperature.
The spin-polarizing effect of a single junction discussed

above can be enhanced by placing several consecutive
crossings to form an array of scatterers as displayed in
Fig. 4(a). Because backscattering is negligible in the single-
mode energy region, we can approximate the overall
transmission probability across an array of N crossings

as Tσ
12 ≈

Q
N
i TσðiÞ

12 where TσðiÞ
12 is the transmission of the ith

junction. This approximation was tested for the case ofN ¼
3 and shows an excellent agreement compared with a
calculation of the full device (see the Supplemental
Material, Sec. S9 [41]). This idea is exemplified in
Fig. 4(b) for two different scenarios: an ideal arrangement
of identical ↑↑ AB-stacked configurations (blue circles) as
well as a more realistic situation corresponding to random
sampling (orange squares, Supplemental Material, Sec. S12
[41]) over different spin, intersection angle (within 55–65°),
and translation configurations. This shows that with four
crossings the total current polarization can reach P12 ∼
95% with a transmission of T↑

12 ∼ 32% in the ideal case.
Even in the pessimistic case with random junctions, where
partial cancellation can occur due to sign changes in the
individual P12, the spin polarization hjP12ji of the array
approaches 1 exponentially in

ffiffiffiffi
N

p
(black curve,

Supplemental Material, Sec. S12 [41]). The best 1st
percentile (top gray curve) of the sampled arrays still
reaches P12 ∼ 80% for N ¼ 8. Although this statistical
analysis is based on the simplifying assumption of equal
weights of the configurations, it serves to illustrate that
arrays can be interesting even if one does not have precise
control over the individual junctions.
In conclusion, we have analyzed the spin-dependent

transport properties of crossed ZGNRs using MFH and
NEGF theory, and found that the beam-splitting effect
reported previously survives in the presence of Coulomb
repulsions with two distinct modifications: A transport
gap opens at low energies, and a spin-dependent scattering
potential emerges. Except for specific high-symmetry
configurations, this class of electronic devices is generally

predicted to behave as spin-polarizing beam splitters
with interesting possibilities for electron quantum
optics [51]. Such spin-dependent scattering potentials
are also obtained with other edge-polarized nanoribbons
(Supplemental Material, Sec. S13 [41]). By constructing
arrays of junctions the spin-polarizing effect can be
enhanced.
Although the proposed devices are ahead of current

experiments, a rapid progress in bottom-up fabrication and
scanning probe techniques makes it conceivable to assem-
ble nearly defect-free junctions on insulating thin films
[52], to drive coherent electron dynamics [53,54], and to
characterize electron transport by multiprobe setups [55] or
through single-photon emission [56]. Our results add to the
vision of using GNR-based devices for spintronics and
quantum technologies. For instance, two spin-polarizing
beam splitters in combination with a charge detector can be
used to deterministically entangle a moving spin qubit [57].
Conversely, a spin-polarizing beam splitter can also be used
to determine the entanglement of injected pairs of spins
[58]. As an additional application, a high-fidelity spin filter
allows “spin-to-charge” conversion and thus a charge-
measurement-based spin determination.
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