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Feshbach resonances provide an invaluable tool in atomic physics, enabling precise control of interactions
and the preparation of complex quantum phases of matter. Here, we theoretically analyze a solid-state analog
of a Feshbach resonance in two dimensional semiconductor heterostructures. In the presence of interlayer
electron tunneling, the scattering of excitons and electrons occupying different layers can be resonantly
enhanced by tuning an applied electric field. The emergence of an interlayer Feshbach molecule modifies the
optical excitation spectrum, and can be understood in terms of Fermi polaron formation. We discuss potential
implications for the realization of correlated Bose-Fermi mixtures in bilayer semiconductors.
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Recently, bilayer structures of two-dimensional materials
have emerged as fascinating platforms for realizing exotic
phases of electronic matter [1,2]. Much of their success is
driven by a new level of control, arising from twisting the
two layers with respect to each other during stacking. Such
twisted bilayers generate a moiré potential for electrons
or holes, which quenches the kinetic energy and therefore
enhances correlations. Most notably this has lead to the
discovery of unconventional superconductivity [3,4], cor-
related insulators, and generalized Wigner crystals [5–7] in
bilayer graphene and transition metal dichalcogenides
(TMDs). In addition to electronic phases, semiconductors
such as TMDs can host excitons, which are strongly bound
electron-hole pairs. They act as mobile composite bosons
and remain rigid due to their large binding energies.
Moreover, excitons interact with free electrons or holes
and can form charged molecules, termed trions. This
renders bilayer TMDs promising candidates to study
complex Bose-Fermi mixtures. Such mixtures have been
recently investigated in dilute quantum gases [8–10], where
Feshbach resonances are routinely used to control inter-
actions between the atomic species [11–15]. By contrast, in
solid state structures the molecular binding energies, and
correspondingly the interaction strength among particles,
are generically fixed by material properties, limiting the
experimentally accessible regimes.

Here, we address this challenge by introducing a solid-
state analog of a Feshbach resonance. Using the layer
degree of freedom as a pseudospin, we demonstrate that the
energy of a closed-channel bound state can be tuned with
respect to scattering states in an open channel, simply by
applying an external electric field Ez. The counterpart of
hyperfine interactions in atomic systems, is provided by
coherent interlayer electron or hole tunneling. The emerg-
ing Feshbach molecule controls the interlayer scattering
and originates from the hybridization of exciton-electron
scattering states with the intralayer (closed channel) trion
state [16]. As such, it is fundamentally distinct from the
formation of interlayer trions due to interactions deter-
mined by the material properties that are not tunable [17].
We demonstrate the impact of such Feshbach resonances
on the spectrum of a single optically injected exciton
immersed in a Fermi sea of charge carriers, taking into
account the radiative exciton decay. Close to the Feshbach
resonance we find a striking modification of the exciton
spectrum. In particular, we show that the spectral shape is
sensitive to the finite range of the effective interactions
relative to the Fermi wavelength.
Our Letter is motivated by a recent experimental obser-

vation of an electrically tunable Feshbach resonance in a
twisted bilayer TMD heterostructure [18]. We theoretically
analyze a more generic scenario with vanishing twist angles
and discuss how resonantly enhanced polaron formation
can be observed in reflection measurements. Our findings
demonstrate the potential for bilayer TMDs to control
valley-selective interactions between itinerant carriers and
establish a novel platform for exploring correlated quantum
dynamics of degenerate Bose-Fermi mixtures.
Effective bilayer Hamiltonian.—We consider a bilayer

semiconductor setup as depicted in Fig. 1. As we are
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interested in low-energy scattering, details of the under-
lying atomic lattice are irrelevant due to the large separation
of scales between the lattice momentum and the momenta
of excitons and electrons. In this regime excitons and
electrons have essentially parabolic dispersions. Tunneling
of electrons (or holes) between the two layers can be
described by an effective average coupling constant t,
which can be adjusted by incorporating tunnel barriers
[7,19]. For concreteness we focus on two identical TMD
layers separated by a distance d. Generically, the exciton
resonances in the top and bottom layers have different
energies, either due to the difference in material properties
or strain, enabling layer-selective exciton creation.
Furthermore, for electric fields close to the Feshbach
resonance, the hybridization of inter- and intralayer exci-
tons is small due to their sizable energy difference. This
allows us to focus only on intralayer excitons [20]. For
simplicity we assume that excitons are injected optically
and are present only in the top layer. The system is then
described by the effective Hamiltonian

Ĥ ¼
X
k

x†k
k2

2M
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��
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where x†k creates an exciton of massM in the top layer, and
c†k;T and c†k;B create fermions of mass m in the top and
bottom layer, respectively.
From now on we refer to itinerant charges as electrons,

although all conclusions apply equally to holes. We omit
the valley and spin degree of freedom and assume that
electrons and excitons reside in different valleys, since only
this scattering channel will be resonantly enhanced. As the
exciton’s Bohr radius is small, excitons and electrons
experience sizable attractive contact interactions U, only
when both particles are in the same layer and opposite
valleys. We also neglect the composite nature of the exciton
and treat it as a structureless boson [21]. The potential

energy differenceΔ ¼ qdEz between the two layers, can be
tuned by changing Ez, as illustrated in Fig. 1. We consider
the scenario where Δ is chosen such that electrons reside
predominantly in the bottom layer.
Feshbach resonance in exciton-electron scattering.—To

understand scattering properties in such a heterostructure,
we focus on the two-particle subspace of the system. In the
center of mass frame, Eq. (1) can then be expressed in first
quantization as
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where μ ¼ 1=ðm−1 þM−1Þ and mtot ¼ mþM are the
reduced mass and the total mass, respectively. The wave
function carries the layer degree of freedom and the part
describing the relative motion can be expressed as
ψðrÞ ¼ ½ψTðrÞ;ψBðrÞ�T=

ffiffiffi
2

p
. Asymptotic eigenstates with

large spatial separation between the two particles define the
open and closed channel. We consider Ez for which
Δ ≃ jE0

Bj, where E0
B is the binding energy of the intralayer

trion. Although both channels are hybridized between the
layers, only the open channel is energetically accessible
and electrons reside predominantly in the bottom layer
(Fig. 2). The scattering threshold for the open (εO) and
closed (εC) channel is εO;C ¼ Δ=2 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 þ Δ2=4
p

.
The outgoing scattering states jψþ

α i, in channel α with
energy E can be found as solutions of the Lippmann-
Schwinger equation:

jψþ
α i ¼ jϕαi þ

1

E − Ĥ0 þ i0þ
Ûjψþ

α i; ð3Þ

FIG. 1. Tunable Feshbach resonances in bilayer heterostruc-
tures. Illustration of exciton-carrier scattering in a bilayer TMD.
The electrostatic potential energy is different in the two layers and
can be tuned by a perpendicular electric field Ez. Scattering
between excitons and electrons is enhanced when the intralayer
trion energy is tuned into resonance with the energy of an electron
and an exciton in separate layers.

(a) (b)

FIG. 2. Illustration of scattering channels. (a) Interparticle
potential for an exciton and an electron prepared in the open
(blue) or closed (red) channel. Tunnel coupling imprints the
closed channel attraction also on the open channel. (b) Threshold
energies of the open and closed channel εO and εC, as the electric
field is varied. The bare closed channel bound-state energy is
denoted as a red line. This bound state can be brought into
resonance with εO for an appropriately chosen electric field.
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where hrjϕαi ∼ eikx is an incoming plane wave [15,22,23].
We can reformulate the problem by introducing the T
matrix T̂Rjϕαi ¼ Ûjψþ

α i, which connects the incoming
plane waves with the full outgoing scattering state.
Equation (3) translates to an equation for the off-shell T
matrix T̂RðEÞ:

T̂RðEÞ ¼ Û þ ÛðE − Ĥ0 þ i0þÞ−1T̂RðEÞ: ð4Þ

We solve Eq. (4) analytically in a plane-wave basis which
diagonalizes Ĥ0:

T̂RðE;kÞ ¼ ½12×2 − Û · ΠRðE;kÞ�−1 · Û;

ΠR
αβðE;kÞ ¼

Z
d2q
ð2πÞ2

δαβ

E − q2

2μ −
k2

2mtot
− εα þ i0þ

; ð5Þ

where E is the scattering energy, and k is the total incoming
momentum. The 2 × 2matrix structure of T̂RðE;kÞ, and Û,
due to the two channels, is implicitly assumed.
Scattering can be resonantly enhanced if Ez is tuned such

that the closed channel bound state is in proximity of the
open channel threshold εO, see Fig. 2(b) for an illustration.
Similar to cold atomic systems, we are interested in two-
particle collisions with small incoming momenta. In this
case, scattering is accurately described by a finite-range
expansion, which is performed by expanding the denom-
inator of the T matrix in powers of E − εO. In two
dimensions the finite range expansion of the on-shell T
matrix takes the universal form

TRðq2=2μ; 0Þ−1 ¼ μ

2π

�
iπ − lnðq2a2Þ þ r0q2

2
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�
;

ð6Þ

which is characterized by the scattering length a and
effective range r0 [24,25]. We relate this expansion to
our effective description by integrating Eq. (5) and match-
ing the open channel scattering amplitude TR

OOðq2=2μ; 0Þ
to Eq. (6). In this way we obtain the open channel scattering
length aO and effective range r0:
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where a ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
2μE0

B

p
is the scattering length of the closed

channel in the absence of tunnel coupling. Analyzing
Eqs. (5)–(7), we find that the open channel T matrix has
a pole at energies below the scattering threshold εO. This is
the signature of a Feshbach molecule which forms in

interlayer scattering [23]. Equation (6) demonstrates that
the energy of the molecule depends on both the scattering
length aO and range r0. We plot the energy of the Feshbach
molecule as a function of detuning in Fig. 3 for three
different t. As the detuning becomes large and positive,
the scattering length starts to diverge while the molecular
energy approaches the scattering threshold. For large
detunings the binding energy is then approximately given
by 1=2μa2O.In the case Δ > E0

B ≫ t we obtain simple
expressions for the binding energy of the Feshbach
molecule EB and the effective range close to resonance,
which reads

EB ≃ E0
B

1

e−2

���� ΔE0
B

����−Δ
2=t2

; r0 ≃
1

μ

Δ
t2
: ð8Þ

This demonstrates the power of a Feshbach resonance:
complete control over the energy of the Feshbach molecule
can be achieved simply by changing Ez. Thus the system
can be electrically tuned to arbitrarily large scattering
lengths [26,27]. While the binding energy of the
Feshbach molecule changes exponentially, the effective
range r0 depends only linearly on Ez. We find that weakly
coupled layers lead to large values of r0, and the resulting
physics is reminiscent of narrow Feshbach resonances in
three dimensions.
In contrast to the three dimensional case, however, the

bound state does not dissolve for any value of Ez, as long as

FIG. 3. Feshbach molecule binding energy. Molecular energy
as a function of electric field (solid blue lines). We have assumed
an exciton mass ofM ¼ 2m and contact interactions between the
exciton and electron. In two dimensions, and in the absence of
interlayer repulsion, a bound state exists for all values ofΔ. When
the size of the molecule exceeds the range of the interactions, the
scattering length alone determines the binding energy (blue dots).
For large positive detunings the molecular energy approaches the
open channel threshold εO (arrows), implying that the binding
energy EB goes asymptotically to zero. For large negative
detunings the binding energy approaches the energy of the bare
intralayer trion.
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there is no repulsive background scattering [28]. The purely
two dimensional geometry of the system also distinguishes
the proposed resonance from realizations in cold atom
systems, where scattering remains effectively three dimen-
sional due to the finite transverse confinement [14].
Optical impurities strongly coupled to a Fermi sea.—

Resonantly enhanced two-particle scattering affects correla-
tions in electron-exciton mixtures. We consider a low
concentration of excitons injected into a Fermi sea of
electrons in the open channel. The excitons in such a system
are mobile impurities and form collective excitations known
as Fermi polarons [30–34]. Here, we analyze the polaron
spectrum as Ez is tuned over the Feshbach resonance.
Our previous discussions focused on two-body scatter-

ing with small but finite momentum, for which the
exciton is long-lived and the scattering matrix is essentially
unitary [35]. Here, we focus on optically excited k ¼ 0
excitons. In this regime excitons couple to the radiation
field, which allows them to decay via electron-hole
recombination via the emission of an optical photon. As
this decay process is essentially memoryless, it can be
described by a Lindblad master equation

_ρðtÞ ¼ −i½Ĥ; ρ� þ
X
k

LkρL
†
k −

1

2
fL†

kLk; ρg;

Lk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΓðkÞ

p
xk; ð9Þ

where ΓðkÞ is the decay rate of the exciton, which we
approximate to be finite only for k ¼ 0, due to the steep
light cone of the photons. In the presence of a Fermi sea
Eq. (9) constitutes a complex many-body system, which
can not be solved exactly. However, it was found that key
properties can already be inferred purely from the scattering
properties of the system [36,37] and that T-matrix approx-
imations provide an accurate description of the ground and
excited states of mobile impurities [25,38–45].

For our heterostructure setting we develop a T-matrix
approximation to include dissipation as well as finite-range
corrections from the Feshbach resonance:

T̂RðE;kÞ¼ ½12×2− Û ·ΠRðE;kÞ�−1 · Û

ΠR
αβðE;kÞ¼

Z
jq0j>kF

d2q0

ð2πÞ2
δαβ

E−ξq0 −εα−
ðk−q0Þ2
2M þ iΓðk−q0Þ

:

ð10Þ

Details on the calculation can be found in the Supplemental
Material [28]. Compared to Eq. (5), the momentum of the
electron in the open channel is now restricted to lie above
the Fermi surface due to Pauli blocking by the Fermi sea.
Exciton recombination results in an imaginary part iΓðkÞ of
the exciton energy [46,47]. Using this T matrix, we then
determine the self-energy of the exciton as a function of
frequency ω:

ΣRðω;kÞ ¼
Z

jqj<kF

d2q
ð2πÞ2 T

R
OOðωþ ξq;kþ qÞ: ð11Þ

This equation originates from the creation of a particle-hole
pair in the open channel, with hole momentum q < kF. The
spectral function of the exciton then reads

Axðω;kÞ¼−2Im
�

1

ω−k2=2M−ΣRðω;kÞþ iΓðkÞ
�
: ð12Þ

As the master equation fulfills fluctuation-dissipation
relations and we have treated dissipation exactly, the
resulting spectral function respects the sum ruleR ðdω=2πÞAxðω;kÞ ¼ h½xk; x†k�i ¼ 1.
We compute the spectrum as a function of detuning,

by integrating Eq. (12) numerically. We show the resulting

(a) (b) (c)

FIG. 4. Exciton spectra across the Feshbach resonance. The zero-momentum spectral function AxðωÞ of a dissipative exciton as a
function of the bias Δ, computed within a T-matrix approximation. The Fermi energy EF is increasing from left to right:
(a) EF ¼ E0

B=30, (b) EF ¼ E0
B=20, (c) EF ¼ E0

B=10. All spectra are computed for weak channel coupling t ¼ 0.15E0
B. The splitting

of the repulsive and attractive branch depends on EF, as highlighted in the line cuts of the spectra for two differentΔ in the lower panels.
For large EF, finite range corrections become increasingly important and the repulsive branch is stabilized and regains oscillator
strength. Motivated by recent experiments, the exciton is assumed to have a radiative lifetime of Γ ¼ E0

B=30 [49,50].
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exciton spectra in Fig. 4 for three different Fermi energies
(a)–(c). They are characterized by the formation of an
attractive branch, with maxima at negative frequencies; and
a repulsive branch, with maxima at positive frequencies.
For small Fermi energies [Fig. 4(a)] the two resonances
approach the Feshbach molecule and bare exciton energy,
respectively: the spectrum can be understood in terms of the
formation of a Fermi polaron and is highly asymmetric. We
observe that the repulsive polaron abruptly transfers spec-
tral weight to the attractive branch as the Feshbach
molecule becomes weakly bound and blueshifts in energy.
With increasing carrier density, the maximal splitting

between the repulsive and attractive branch grows
[Fig. 4(b)]. Surprisingly, we find that the repulsive polaron
branch is stabilized with growing electron densities, as seen
in Fig. 4(c), despite the possible relaxation channel via
excitations in the Fermi sea. This change in spectral shape
cannot be explained assuming contact interactions, but
rather arises from significant finite range corrections
[48,51]. Since the average scattering process involves
momenta on the order of kF, the nonlogarithmic terms
in Eq. (6) become successively more important at high
densities and strongly renormalize the spectrum. In our
setup Feshbach resonances are rather broad, which leads to
characteristic spectral asymmetries due to the strong
coupling to a continuum of scattering states. For
Feshbach resonances based on polaritons on the other
hand, this coupling is typically very weak due to the steep
polariton dispersion, which can obscure the relevant scat-
tering physics [52]. As the spectral function of the exciton
is directly accessible in reflection measurements, the
features we identified provide particularly clear experimen-
tal signatures, which result from many-body effects.
Conclusions and outlook.—We have investigated an

electrically tunable solid-state Feshbach resonance, using
the layer pseudospin degree of freedom of semiconductor
bilayers. Our scheme allows for a controlled enhancement of
electron-exciton scattering in experiments.We find that much
of the resulting Feshbach physics, such as Fermi-Polaron
formation for a dilute concentration of excitons, may be
observed in experiments as a highly asymmetric and density-
dependent reflection spectrum. This makes TMD bilayers
ideal systems to study two dimensional Fermi polarons in
parameter regimes that have so far been inaccessible in cold
atomic gases and monolayer semiconductors.
By extending our setup to finite exciton densities,

Feshbach resonances could enable precise control of
degenerate Bose-Fermi mixtures in solid state systems.
This is particularly appealing as excitations of an excitonic
Bose gas can mediate superconductivity in a Fermi sea
[53,54]. Since the bound state exists only for excitons and
electrons with a different spin-valley degree of freedom,
the Feshbach resonance could allow for spin selective
interaction control and may induce instabilities in exotic
pairing channels.

Feshbach resonances can also form in different scattering
channels than the one considered here, i.e., an electron and
an interlayer exciton in resonance with an intralayer bound
state, which could prove to be useful in the context of long-
lived indirect exciton condensates [55]. This is possible as
interlayer and intralayer excitons have been shown to
hybridize due to tunneling, and the energy of the former
can be tuned electrically [7,56]. We further remark that while
we discuss structures consisting of two identical TMD
layers, the emerging Feshbach physics is universal. By
choosing different TMDs and spacer materials one can vary
the tunnel coupling and therefore the resonance width r0.
Furthermore, our results generate the opportunity to

study few-body physics in two dimensional semiconduc-
tors. The tunable scattering length can be used to explore
exotic multiparticle bound states, where a single electron
binds multiple excitons [57,58]. While we specifically
considered resonant scattering between excitons and elec-
trons, Feshbach physics in 2D materials could be a generic
phenomenon that may also be relevant for understanding
purely electronic processes [59].
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