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The Kitaev model is a fascinating example of an exactly solvable model displaying a spin-liquid ground
state in two dimensions. However, deviations from the original Kitaev model are expected to appear in real
materials. In this Letter, we investigate the fate of Kitaev’s spin liquid in the presence of disorder—bond
defects or vacancies—for an extended version of the model. Considering static flux backgrounds, we
observe a power-law divergence in the low-energy limit of the density of states with a nonuniversal
exponent. We link this power-law distribution of energy scales to weakly coupled droplets inside the bulk,
in an uncanny similarity to the Griffiths phase often present in the vicinity of disordered quantum phase
transitions. If time-reversal symmetry is broken, we find that power-law singularities are tied to the
destruction of the topological phase of the Kitaev model in the presence of bond disorder alone. However,
there is a transition from this topologically trivial phase with power-law singularities to a topologically
nontrivial one for weak to moderate site dilution. Therefore, diluted Kitaev materials are potential
candidates to host Kitaev’s chiral spin-liquid phase.
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Introduction.—Over the past decades, strong spin-orbit
coupling has been recognized as a key ingredient in
stabilizing unconventional phases in correlated materials
[1–4]. For 4d and 5d Mott insulators, for instance, there is
great interest in the Kitaev materials, which are systems
hosting dominant Ising-like bond-dependent interactions
for local effective moments jeff ¼ 1=2 in stacked honey-
comb planes [5–12]. If these bond-dependent interactions
have similar strength, Kitaev exactly established the exist-
ence of a quantum spin liquid [13–15] of gapless Majorana
fermions moving in a static Z2 flux background.
Remarkably, an infinitesimally small external magnetic
field generates chiral Majorana edge modes with half-
quantized thermal Hall conductance [5,16].
A promising Kitaev material is α-RuCl3 [17–19], which

displays long-ranged magnetic order at low T, suggesting
further magnetic interactions beyond Kitaev’s [20].
The magnetic order is suppressed by an external magnetic
field [21–27], and it is replaced by an intermediary
phase—distinct from the high-field polarized state—
that exhibits a half-quantized thermal Hall conductance
[28,29].
Another putative Kitaev material is H3LiIr2O6 [30],

which shows no magnetic order down to 50 mK, making
it a prominent candidate to realize Kitaev’s spin-liquid
phase. However, the experimental observations are at odds
with the thermodynamic behavior of the clean Kitaev
model [31–33]: (i) the specific heat diverges at low T as
C=T ∝ T−1=2; (ii) the uniform magnetic susceptibility
shows a similar, albeit milder, divergence χ ∼ T−1=2; (iii) the
1=T1 NMR spin-relaxation rate has a nonvanishing con-
tribution down to low T, and the Knight shift is almost flat

in this region. All these results point to an appreciable
amount of low-energy excitations.
This work shows that the experimental observations in

H3LiIr2O6 can be understood within Kitaev’s model if one
considers the presence of defects. Microscopic sources of
the disorder include stacking faults [34] and the random
position of the H ions. To study the effects of uncorrelated
quenched disorder in this model in a controlled fashion, we
address the role of bond disorder and site dilution (vacan-
cies) separately.
Following the previous studies of Refs. [35,36], we also

observe that a finite concentration of defects generically
leads to a power-law divergence in the low-energy density
of states (DOS). Motivated by this robust result, we then
construct a comprehensive Griffiths-like scenario [37–41]
and establish that (i) the DOS power-law exponent α is
nonuniversal; (ii) C=T and χ diverge with the same
exponent α; (iii) there is a nontrivial scaling for C=T when
T=B ≪ 1; and (iv) 1=T1T follows a Korringa-like law. All
these findings are in accordance with the experimental
results for H3LiIr2O6. Importantly, this scenario does not
rely on the formation of random singlets [42–48], which is
a topologically trivial state, unlike a disordered Kitaev spin
liquid [49,50]. For bond disorder, however, robust power-
law singularities at low magnetic fields are linked to the
destruction of the topological phase. For vacancies, we find
that Kitaev’s chiral spin-liquid phase survives up to a
critical dilution, due to a nontrivial flux configuration,
before being replaced by a topologically trivial phase with
power-law singularities. This suggests that a half-quantized
thermal Hall conductance might be detected experimentally
in diluted Kitaev materials [51–54].
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Extended Kitaev model.—As a minimal model to capture
the low-energy physics of H3LiIr2O6, we consider an
extended Kitaev model on the honeycomb lattice [55]:

H ¼ K
X

hijiα
σαi σ

α
j þ κ

X

⟪ik⟫

σαi σ
β
jσ

γ
k − K0

3

X

⟪hili⟫
σαi σ

γ
jσ

γ
kσ

α
l ; ð1Þ

where K is the usual Kitaev coupling and σαi is the Pauli
matrix at site i with spin component fα; β; γg ∈ fx; y; zg.
hijiα labels the nearest-neighbor sites i and j along one of
the three different links; see Fig. 1(a). The three-spin term
mimics the effects of an external magnetic field and breaks
time-reversal symmetry, with κ ∝ hxhyhz=Δ2f, where Δ2f

is the two-flux gap (to be defined below) [5]. The four-spin
interaction runs along a path of length 3; see Fig. 1(a).
While the K0

3 term can be generated perturbatively if one
includes exchange couplings beyond the pure Kitaev [56],
we consider Eq. (1) as an effective low-energy theory [57],
and treat K0

3 as one of the first allowed terms in the theory
that preserves time-reversal symmetry [55]. To restrict the
model’s parameter space, we consider K; κ; K0

3 > 0.
Equation (1) is still amenable to the Kitaev’s exact

solution [5]. We write the spin operator in terms of
four Majorana fermions σαj ¼ ibαj c, and the Hamiltonian
becomes

H ¼ −iK
X

hijiα
uαijcicj − iκ

X

⟪ik⟫

uαiju
β
kjcick;

þ iK0
3

X

⟪hili⟫
uαiju

β
kju

α
klcici; ð2Þ

where uαij ¼ −uαji ¼ ibαi b
α
j ¼ �1 is a conserved Z2 gauge

field along the α bond hijiα. The flux around each
hexagonal plaquette p is a conserved quantity and may
be written as Wp ¼ Q

hiji∈p uαij [5]. Since the fluxes
commute with each other and with the Hamiltonian in
Eq. (2), once we fix the link variable uαij at each bond, thus
defining a flux sector, the problem can be solved exactly as
a tight-binding model of Majorana fermions and we obtain
H ¼ P

ν ðEν − 1=2Þf†νfν. The operators fν are complex
fermions operators (consisting in the superposition of two
Majorana operators [58]) that label the eigenstate with
energy Eν in a given flux sector.
For the pure Kitaev model, κ ¼ K0

3 ¼ 0, in the absence
of disorder, we have a 0-flux ground state, i.e., Wp ¼ þ1

for all plaquettes. The two-flux gap is the difference
between the ground state energies of a system with a
single flipped link variable and the original reference state
because a single bond flip creates a pair of fluxes in
neighboring hexagons [5,61]. The ground state flux state
depends on K0

3 [55]. For our parameter regime, we find that
for K0

3 ≳ K=8 the ground state comprises one flux per
plaquette, i.e., Wp ¼ −1 for all plaquettes [58], but we do
not explore this transition in this work. We consider finite
clusters of linear size L, with periodic boundary conditions.
Because we have two sites per unit cell, the total number of
sites is N ¼ 2L2.
Bond disorder and random flux.—We now add disorder

to the model in Eq. (2). Specifically, we consider a binary
bond disorder for all Kitaev couplings setting K →
K � δK, with probability 0.5 to generate either a weak
bond, ðK − δKÞ, or a strong bond, ðK þ δKÞ. For simplic-
ity, we assume the couplings κ and K0

3 to be homogenous.
In terms of Majorana fermions, this problem translates into
a random hopping problem in a bipartite lattice. For
κ ¼ K0

3 ¼ 0, it is rigorously known that the DOS,
ρðEÞ ¼ P

ν δðE − EνÞ=N, has a low-E divergence ρðEÞ∼
exp ð−cj lnEj2=3Þ=E, where c is a positive constant [62,63].
Nevertheless, this divergence occurs only at asymptotically
low-energy scales, eluding even large-scale numerical
simulations [62,63]. This fact probably places it outside
the experimentally accessible regimes for magnetic
materials.
After fixing the flux state, we numerically diagonalize

Eq. (2). We find that the static flux configuration is
sensitive to strong disorder [64]. Specifically, we observe
that for δK ≳ 0.6 the ground state energies of the different
flux sectors become comparable within the error bars [58].
This implies that Δ2f → 0 as δK → 1, as in recent quantum
Monte Carlo results [50,65]. Therefore, we consider the

(a)

(c) (d)

(b)

FIG. 1. Extended Kitaev model in Eq. (2) in the presence of
bond disorder. (a) Links x, y, and z in the honeycomb lattice and
the hopping between second (κ) and third neighbors ðK0

3Þ.
(b) DOS as function of the energy for δK ¼ 0.8. Inset: log-log
plot showing the power-law divergence at low E. (c) Bott index as
a function of disorder. (d) Static uniform spin susceptibility
as a function of the temperature in a log-log plot for δK ¼ 0.8. In
(b)–(d) full (dashed) curves correspond to random (0) flux. We
consider the same parameters in (b) and (d). The dot dashed
curves in (b) and (d) are power-law fits, shifted with respect to the
original curves, with α ¼ 0.455ð5Þ; 0.222ð3Þ; 0.209ð4Þ. We con-
sidered L ¼ 30 and 3 × 103 realizations of disorder.
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random flux background a competitive variational flux
state. In this state, we randomly set uαij ¼ �1 at each link
with equal probability.
Figure 1(b) shows the averaged DOS for δK ¼ 0.8. For

K0
3 ¼ κ ¼ 0, both the 0-flux and random-flux states pro-

duce a diverging power-law behavior at low E: ρðEÞ ∼ E−α,
in accordance with the results of Refs. [35,36]. If one
assumes that the flux degrees of freedom are frozen, it
follows thatC=T ∼ T−α [35,36]. The power-law exponent α
is nonuniversal and it depends continuously on the model
parameters; see Fig. 1(b) [58]. The evolution of α with κ is
particularly sensitive to the flux sector. While the random-
flux sector experiences a reduction of α as κ increases, the
0-flux state displays a gap in the Majorana spectrum. This
gap is reminiscent of the topological gap present in the
clean case [5].
To further explore the effects of bond disorder on the

thermodynamic response, we also calculate the static uni-
form susceptibility employing the adiabatic approximation
[58,61,66,67]. We show sample results for κ ¼ K0

3 ¼ 0 and
δK ¼ 0.8 in Fig. 1(d). The random-flux sector shows a
diverging susceptibility χ ∼ T−α at low T, with α the DOS
exponent, in line with the results for H3LiIr2O6 [30]. The
0-flux state, on the other hand, shows a finite χ at low T. We
can trace back these behaviors to the value of Δ2f. In the
0-flux state, Δ2f remains finite, albeit smaller, for δK > 0

[65,68], and the susceptibility goes to a constant for
T < Δ2f. In the random-flux state, Δ2f → 0 and χðTÞ
follows ρðEÞ at low energies.
These two flux states also manifest differently in the

topological properties of the system; see Fig. 1(c). To capture
a nontrivial topological phase, we compute the Bott index,
which is equivalent to the Chern number in periodic systems.
Still, it is more conveniently implemented in systems lacking
translational invariance [58,69–71]. The 0-flux state shows a
stable topological phase up to δK → 1 due to the finite
topological gap in the Majorana spectrum present in ρðEÞ
[50,68]. This is similar towhat is observed in disordered two-
dimensional disordered Chern insulators [72–75]. However,
there is a pileup of low-energy states in the random-flux state,
even for δK ¼ 0, and the topological phase is destroyed for
all δK. We complement the Bott index results with an
investigation of the level spacing statistics [58,73,76,77],
and the results are entirely consistent.
Based on our results, we construct the following scenario

for disordered Kitaev materials. Taking κ to mimic the
effects of an external magnetic field, the experimental
results observed in H3LiIr2O6 [30] can be described by
Eq. (2), augmented by bond disorder, only if one assumes a
random-flux state [35,36]. This, in turn, implies that power-
law singularities at zero fields are associated with a
topologically trivial phase in a finite field also displaying
power-law singularities but with a smaller exponent.
Griffiths-like response.—We now present a physical

mechanism behind the power-law singularities in the

DOS. Although this is a crossover regime [62,63], the fact
that it emerges for distinct choices of disorder distributions
[35,36] suggests a more general picture.
Power-law distribution of energy scales is commonly

observed in the vicinity of quantum critical points in
disordered systems [37–41], in the so-called Griffiths
phase. We exploit this similarity and propose the following
mechanism. Suppose a rare region (droplet) of linear size l
contains only weak bonds at its boundaries. The probability
of finding such cluster inside the bulk is PðlÞ ∝
exp ½b lnðpÞl�, where p is the probability of finding a
single weak bond and b > 0 is a constant. For a completely
disconnected region, δK → K, a finite-size gap appears in
the Majorana spectrum ΔðlÞ ∝ exp ½−al�, with a > 0
another constant. This gap comes from the hybridization
of the localized states at the edges of this cluster [58]. The
contribution to the density of states coming from these
rare regions is ρðEÞ ¼ R

dlPðlÞδ½E − ΔðlÞ� ∼ E−α, with
α ¼ 1þ ðb=aÞ lnðpÞ. Therefore, weakly coupled clusters
give rise to a power-law singularity in the DOS. For even
lower temperatures, we eventually flow away from this
crossover regime toward the asymptotic result ρðEÞ ∼
exp ð−cj lnEj2=3Þ=E [62,63].
We extend this Griffiths phase analogy and calculate the

leading low-T contribution to several physical observables in
the limit of frozen flux configurations, such that we can link
the spin excitations solely to ρðEÞ. For instance, we can
estimate the number of free clusters as nðTÞ∼R
T
0 ρðEÞdE ∼ T−αþ1. This leads to a finite low-T entropy
for the spins S ∼ nðTÞ ln 2 and thus C=T ∼ T−α.
Analogously, the uniform spin susceptibility can be esti-
mated as χðTÞ ∼ nðTÞ=T ∼ T−α, which eventually over-
comes any regular contribution from the bulk.
Importantly, this result does not rely on the adiabatic
approximation. The imaginary part of the dynamical sus-
ceptibility is given by χ00ðωÞ ∼ R

δðω − EÞρðEÞdE ∼ ω−α.
Because the cluster excitations are essentially local, we may
write the NMR spin-relaxation rate 1=T1 as [78]
1=T1T ∼ χ00ðωoÞ=ωo ∼ ω−α−1

o , where ωo is the nuclear
resonance frequency. Therefore, 1=T1T remains finite down
to very low temperatures. Lastly, we can also discuss the
curious data scaling encountered inRef. [30]:C=T ∼ B−3=2T
for T < B, where B is the magnetic field. First, we write [5]
κ ∼ B3=Δ2

2f ∼ B3=T2, setting T as the low-energy scale in
this regime. Because T ≪ κ, we employ a Sommerfeld-like
expansion and write C ∼ ρðκÞT ∼ κ−αT ∼ B−3αT1þ2α. For
α ¼ 1=2, we obtain the experimentally observed scaling.
Therefore, a disordered extension of Kitaev’s spin liquid

provides a consistent scenario to the experimental results
observed in H3LiIr2O6 once we combine a power-law low-
energy DOS with standard Griffiths-like arguments.
However, such a scenario is incompatible with a topologi-
cal nontrivial phase for bond disorder alone because it
requires a random-flux state.
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Site dilution and unpaired spins.—We now introduce
vacancies in the extendedKitaevmodel, Eq. (2). Specifically,
we remove a fraction x of spins from the system. To avoid
trivial zero-energy modes, we remove exactly xN=2 spins
from each sublattice. In the limit x ≪ 1, a vacancy binds a
flux to it [79]: as one loops the impurity plaquette,Wp ¼ −1;
see Fig. 2(a). Becausewework at finitex, we consider both 0-
flux and bound-flux states [36]. In the 0 (bound) flux,Wp ¼
þ1ð−1Þ in the vacancy plaquette. For all other honeycomb
loops,Wp ¼ þ1; see Fig. 2(a). We find that the random-flux
state is not a competitive ground state for x≲ 0.1 [58].
Unlike the bond disordered case, a small dilution is

sufficient to induce a pileup of low-energy states, similar to
what is observed in graphene [80–82], independently of
the flux sector [36,58]. A clearer distinction between the
different flux configurations emerges for κ ≠ 0. In Fig. 2(b)
we show the DOS for the bound-flux state, κ ¼ 0.1K,
K0

3 ¼ 0, and several values of dilution x. For x≲ 0.05, we
observe a localized level inside the clean gap. The larger the
κ, the more well-defined this state is. As we increase x, we
reduce the impurity distance—its typical value scales as
1=

ffiffiffi
x

p
—enhancing the overlap between the impurity states,

which gives rise to an impurity band inside the clean
topological gap, similar to what is observed in disordered
Chern insulators [72,73,75]. The resulting phase is a
topologically trivial phase with power-law singularities.
See the inset of Fig. 2(b).
To see the effects of the in-gap states on the topological

properties of the system, we compute the Bott index; see

Fig. 2(c). In the small κ regime, B is no longer quantized for
the 0-flux state if x > 0.02. For the bound-flux state,
however, B remains pinned to an integer up to x ≈ 0.05
(this critical value depends on κ [58]). In both cases, the
clean topological gap is the same, and this extra robustness
of the bound-flux state is rooted in the in-gap state at finite
energy shown in Fig. 2(b). The existence of this state can be
understood as follows. Consider the impurity plaquette as a
l ¼ 12 tight-binding chain with nearest-neighbor hopping
only (the vacancy plaquette has a length l ¼ 12 rather than
l ¼ 6 for the elementary honeycomb one). The spectrum of
this problem has (does not have) a gap if the chain binds
(does not bind) a flux. For finite x, the impurity states go
into this level, ensuring the localization of the impurity
states around the vacancy for small x. For larger concen-
trations, other impurities configurations become relevant,
e.g., a pair of neighboring vacancies [58], and more states
inside the topological gap are populated. This suggests that
a topological phase could be stable in the diluted system for
an external field that is large enough to quantize B for a
given x, but not too large as to move the system away from
the bound-flux state [36,79]. The presence of this topo-
logical phase might be probed experimentally using the
thermal Hall conductance [28,29,83]. Despite being chal-
lenging, these measurements could be relevant both to
H3LiIr2O6 [30] and Ir-doped RuCl3 [52–54].
In Fig. 2(d), we show sample results for the static

uniform spin susceptibility χðTÞ. We observe a mild
increase in χðTÞ for the bound flux, with similar results
for the 0 flux. A bona fide power-law divergence is present
only at much lower temperatures [58]. This behavior is due
to the existence of unpaired bonds [65]. By removing a site,
we automatically leave its three nearest neighbors discon-
nected along one bond. Such unpaired bonds automatically
display Δ2f ¼ 0, and they dominate the low-T behavior of
χðTÞ. However, since the fraction of unpaired spins is equal
to x, at least for small x, their overall contribution is masked
by the remaining 1 − x fraction of bulk spins that give a
finite contribution to χðTÞ if T < Δ2f [58]. This is also in
line with the Knight shift measurements reported in [30]:
spins far away from the defects produce a regular flat
contribution to the local spin susceptibility, whereas spins
around a vacancy give a singular response. Because the
condition Δ2f ¼ 0 is automatically satisfied by these
unpaired spins, the Griffiths-like arguments discussed
previously apply directly here, regardless of the considered
static flux background. As a closing remark, we stress that
the asymptotic results for χðTÞ calculated in Ref. [79] are
only relevant for large fields, where the magnetic length is
smaller than the typical interimpurity distance, and the
single vacancy limit holds.
Conclusions.—We investigated an extended Kitaev

model, Eq. (2), in the presence of defects. We find the
emergence of a singular power-law density of states at low
energies [35,36] with a nonuniversal exponent. We then

(a) (b)

(d)(c)

FIG. 2. Diluted extended Kitaev model, Eq. (2). (a) Bound-state
flux configuration. The shaded l ¼ 12 plaquettes show the
binding of a flux by each vacancy. (b) DOS as function of the
energy for κ ¼ 0.1K and K0

3 ¼ 0. Inset: log-log plot showing the
power-law divergence at low E for x ≥ 0.06. The dot-dashed
curves are power-law fits, shifted with respect to the original
curves, with α ¼ 0.496ð1Þ; 0.445ð3Þ. (c) Bott index as a function
of the dilution for the bound flux (0 flux) in the upper (lower)
panel. (d) Log-log plot of χ × T in the bound-flux sector for
x ¼ 0.04. We use the same parameters as in Fig. 1.
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construct a phenomenological scenario for our numerical
findings by discussing this power-law distribution of
energy scales in terms of a Griffiths-like phase. Our results
provide a consistent scenario to the experimental observa-
tions for H3LiIr2O6 [30], and we expect them to describe
other diluted Kitaev materials as RuCl3 [52–54] and the
Iridates [51,84].
From a theoretical perspective, this unanticipated link

deserves further study since a Griffiths-like phenomenol-
ogy appears naturally in a random-singlet phase [42–48].
In the absence of disorder, a valence-bond crystal and the
Kitaev spin liquid are separated by a quantum phase
transition [85,86]. Our work points toward an exciting
evolution of this critical point with the disorder.
In the presence of a time-reversal breaking term, we find

that the topological properties of the system are sensitive
both to the static flux background and to the particular
choice of disorder. For bond disorder, the power-law
singularities are robust only if one assumes a random-flux
background, implying a lack of a topological spin-liquid
phase. However, the power-law singularities survive at
weak external magnetic fields for small concentrations of
vacancies. They are eventually quenched at larger fields,
where a topological phase with chiral Majorana edge
modes emerges. The stability of this topological phase
comes from the fact that a vacancy binds a flux to it, which
helps protect the clean topological gap in the Majorana
spectrum. Our results indicate that diluted Kitaev materials
are promising candidates to display Kitaev’s chiral spin-
liquid phase in weak to moderate magnetic fields.
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