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We solve a model that describes a stimulated conversion between ultracold bosonic atoms and
molecules. The reaction is triggered by a linearly time-dependent transition throughout the Feshbach
resonance. Our solution predicts a dependence, with a dynamic phase transition, of the reaction efficiency
on the transition rate for both atoms-to-molecule pairing and molecular dissociation processes. We find that
for the latter process with a linear energy dispersion of atomic modes, the emerging phase can have a
thermalized energy distribution of noninteracting bosons with the temperature defined by the rate of the
transition. This provides a simple interpretation of the phase transition in terms of the creation of
equilibrium Bose-Einstein condensate.
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Recently, a coherent conversion between Cs atomic
Bose-Einstein condensate (BEC) and the condensate of
Cs2 molecules was demonstrated by varying a magnetic
field in time and thus pushing the system across the
Feshbach resonance [1]. To suppress irreversible scatter-
ings, BECs of rotating molecules were confined in a quasi-
2D trap in [1]. In the created state, possibly up to 50% of
molecules formed a condensate, and in the reversed
process, about 40% of the molecules coherently dissociated
into atoms. Further improvements of the conversion effi-
ciency will enable the chemistry of coherent BECs for
engineering macroscopic correlated quantum states, with
applications in sensing and information processing.
Until the experiment in [1], it was possible to generate a

considerable fraction of the molecular condensate only for
the reactions of fermionic atoms [2–6], which had fewer
possibilities than bosonic ones to create detrimental exci-
tations. A considerable understanding of fermion-boson
reactions was achieved due to the discovery of the
integrability of the time-dependent Tavis-Cummings model
[7,8], which provided statistical characteristics of the final
many-body state. A similarly general approach to the
purely bosonic reactions is still missing but desirable for
searching new effects and engineering quantummany-body
states.
The theory of the integrability of explicitly time-depen-

dent quantum systems has recently produced a variety of
solvable linearly time-dependent quantum models [9].
Many of their applications have been anticipated [10–
14]. However, the bulk of the found models describe
interactions of only a few states. Although the conditions

for integrability are known, there is still no straightforward
path to identify the models with a combinatorially complex
phase space that would satisfy such conditions. Hence, the
search for such models still relies heavily on intuition and
chance.
In this Letter, we identify a new experimentally relevant

model that can be solved exactly and that captures the
main features of the chemistry of BECs. Its Hamiltonian
describes a stimulated conversion between bosonic atoms
and molecules during a sweep of a linearly time-dependent
magnetic field across a Feshbach resonance. Our model
captures the main features of the process: many-body
interactions, energy dispersion of the atomic states, differ-
ent initial populations of these states, and an arbitrary
sweep rate β:

HðtÞ ¼ −βtΨ̂†Ψ̂þ
X
k

fεakâ†kâk þ εbkb̂
†
kb̂k

þ gðΨ̂†âkb̂k þ Ψ̂â†kb̂
†
kÞg: ð1Þ

Here, âk, b̂k, and Ψ̂ are the boson annihilation operators;
εa;bk are the energies of the free atoms; β is proportional to
the ramp of the magnetic field that sweeps the system
across the Feshbach resonance, and g is the coupling for the
conversion of the atomic pairs into the molecules; Ψ̂ is the
molecular operator, and âk and b̂k describe the modes of the
ultracold atoms. The atomic modes are generally different
[15]. For example, the momentum conservation may force
the molecules with zero momentum to split only into atoms
with opposite momenta �p. In this case, the index k runs
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over only half of the possible atomic states, for which we
associate âk with âp, and we associate b̂k with â−p.
However, we allow for any reaction channel k to identify
b̂k with âk, which is possible if a pair of emerging atoms
has p ¼ 0.
To keep the Eq. (1) model integrable, we disregarded the

energy dispersion of molecular states, which can be
justified by the fact that the molecular condensate domi-
nates the coherent reactions with atoms. We also do not
include other than cubic interactions of the particles, which
means that the molecular-atomic interactions near the
resonance dominate.
We assume that as t → −∞ the system is close to its

ground state. Hence, the Eq. (1) model for β > 0 describes
the driven transition from atoms as t → −∞ into an initially
empty molecular mode [Fig. 1(a)]. We will call this a
“forward process.” The “reverse process” describes the
dissociation of the molecular condensate in Fig. 1(b). It
corresponds to β < 0, so that the state with a molecular
condensate is at t ¼ −∞, and it is then coherently converted
into atomic pairs. Our goal is to find the final state
as t → þ∞.
Prior theories of the BEC chemistry were usually

restricted by considering steady conditions [17–21].
They revealed a possibility of a phase transition [17,18]
but the effect of the nonadiabatic dynamics during the

stimulated transition through the Feshbach resonance was
missing. On the other hand, the explicitly time-dependent
evolution could be studied only with considerable approx-
imations, for example, using the mean field quadratic
Hamiltonians [22] or applying semiclassical and diagram-
matic techniques that disregarded the atomic energy
dispersion [23,24] and could be justified only for proper
limits of the model’s parameters.
The integrability of the Eq. (1) model thus reveals the

most nontrivial behavior that can be tested for BEC
reactions: the emergence of dynamic phase transition,
the effect of competition between different reaction chan-
nels, and the properties of quantum correlations that are
induced by cubic interactions in HðtÞ.
To solve the model, we note that Qk ¼ â†kâk − b̂†kb̂k

commutes with HðtÞ, and introduce operators Kþ
k ≡ â†kb̂

†
k

and K−
k ≡ âkb̂k, which satisfy

½q̂k; K�
k � ¼ �2K�

k ; ½K−
k ; K

þ
k � ¼ ðq̂k þ 1Þ; ð2Þ

where q̂k ≡ â†kâk þ b̂†kb̂k. We also introduce parameters
εk ¼ ðεak þ εbkÞ, and τ to rewrite HðtÞ as

HðtÞ¼−βtΨ̂†Ψ̂þ
X
k

fτεkq̂k=2þg½Ψ̂†K−
k þ Ψ̂Kþ

k �g: ð3Þ

FIG. 1. The reaction between the atomic and the molecular condensate in (a) the forward and (b) the reverse process. The E axis is
energy; purple arrows show the direction of the transition throughout the resonance. Molecular and atomic modes in an arbitrary trap are
shown as pink and green surfaces, respectively. (c) and (d) characterize the average number of molecules hmi and of atomic pairs
hni ¼ N − hmi that are found for different values of the inverse sweep rate, 1=β, at g ¼ 1, after the transition starting from the ground
state in the forward and the backward processes in Eq. (6), respectively. The discrete points are the exact predictions for the initial
number of particles N ¼ 104 [16], and the solid curves in (c) and (d) are the large-N predictions of, respectively, Eq. (10) and Eq. (13)
from [16].
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At τ ¼ 1, we reproduce Eq. (1) up to Qk-dependent terms
that do not change the dynamics. Our main observation is
that HðtÞ in Eq. (3) commutes with

H1ðtÞ ¼
X
k

�
εk

�
tþ τεk

β

�
q̂k
2
þ gεk

β
½Ψ̂†K−

k þ Ψ̂Kþ
k �
�

þ g2

βτ

X
i;j;i≠j

ðKþ
i K

−
j − ðq̂i þ 1Þðq̂j þ 1Þ=4Þ; ð4Þ

and these two operators satisfy the relation

∂H=∂τ ¼ ∂H1=∂t: ð5Þ

According to [9,27], this renders our model an integrable
multistate Landau-Zener model, for which any rescaling of
τ in Eq. (3) does not change the scattering probabilities
between any eigenstates of HðtÞ.
Hence, without affecting the final result, we can set

τ → ∞, which renders all atomic energies, τεk in HðtÞ,
well-separated by the time of the corresponding reso-
nances, at which τεk ¼ −βt. Near each such resonance,
we can safely disregard all other reaction channels. After
finding the scattering amplitudes at each channel (reso-
nance), we can then treat the effects of different resonances
sequentially in their chronological order to find the state
after the passage through all resonances.
The Hamiltonian restricted to a single reaction channel,

Ψ̂ ↔ â b̂, is given by

HðtÞ ¼ −βtΨ̂†Ψ̂þ gðΨ̂†â b̂þΨ̂â†b̂†Þ; ð6Þ

where we shifted the timescale to set the resonance at t ¼ 0.
The dynamics with Eq. (6) conserves two quantities:

N ¼ Ψ̂†Ψ̂þ b̂†b̂; Q ¼ â†â − b̂†b̂: ð7Þ

This allows us to express the microstates only via the
number of molecules m: jmi≡ jm;N −mþQ;N −mi,
where N −mþQ and N −m are the numbers of atoms in
a and b modes, respectively. Note also that, at Q ¼ 1,
Eq. (6) has the same matrix elements as the Hamiltonian
with a single atomic mode: â≡ b̂.
Following [23], Eq. (6) can be mapped to the driven

Tavis-Cummings model (DTCM) [7,8]:

HTC ¼ βtðψ̂†ψ̂ − NÞ þ gðψ̂†Ŝ− þ ψ̂ ŜþÞ; ð8Þ

where ψ̂ is a boson annihilation operator, and Ŝ� are raising
or lowering operators of a spin with size S ¼ ðN þQÞ=2.
The DTCM conserves N ¼ ψ̂†ψ̂ þ ðSþ ŜzÞ. Hence, we
can mark its states as jmi where m ¼ Sþ Sz. Then,

hmþ 1jHTCjmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN −mÞðN þQ −mÞðmþ 1Þ

p
: ð9Þ

Comparing with Eq. (6), we find

hmjHjm0i ¼ hmjHTCjm0i; ∀ m;m0:

This map is not intuitive in the sense that the number of
molecules m in Eq. (6) is not the same as the number of
bosons in the DTCM. Instead, hmjψ̂†ψ̂ jmi ¼ N −m.
Reaction efficiency.—The DTCM has been solved pre-

viously [7]. Its transition probabilities between any micro-
states can be found in Eqs. (23) and (24) in [8], where the
limits of large N are also described. For the forward
process, there is a negative feedback because the net
number of bosons in the system decreases with emergence
of molecules. Using the map to the Tavis-Cummings model
[16], we find that if all atoms are initially in the ground state
with some number of pairs N ≫ 1 and Q ¼ Oð1Þ, then the
probability distribution of finding m molecules, for
hmi ≫ 1, at the end is nearly Gaussian and sharply peaked
near the average value

hmi≡hΨ̂†Ψ̂it→∞¼Nþ logð2−xNþQÞ
logx

; x¼e−
2πg2

β : ð10Þ

For the reverse sweep, starting with N molecules and no
atoms, after the passage through one resonance, the
probability to produce n atomic pairs is given by [16]

Pn ¼ xN−nðxN−nþ1; xÞn; x ¼ e−2πg
2=β; ð11Þ

where

ða; xÞn ≡
Yn−1
k¼0

ð1 − axkÞ ¼ ð1 − aÞð1 − axÞ � � � ð1 − axn−1Þ

ð12Þ
is the q-Pochhammer symbol. According to [28], this dis-
tribution is broad due to the positive feedback that also leads
to a dynamic phase transition. If the number of moleculesN
is initially macroscopically large, then the fraction of
molecules converted to atoms, hni=N¼1−hmi=N, behaves
discontinuously as a function of g2=β. Let

f ¼ 2πg2

β

N
logeN

; ð13Þ

then the distribution Eq. (11) has the property

hni=N ¼ 0 for f < 1; N → ∞;

hni=N ¼ f − 1

f
for f ≥ 1; N → ∞: ð14Þ

In Figs. 1(c) and 1(d), we confirm the Eqs. (10) and
(14) predictions using numerically exact transition proba-
bilities [16] for N ¼ 104, and also verify robustness of such
predictions against an initial asymmetry in atomic
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population due to nonzero Q. Here, we note similarity of
Fig. 1(d) with the experimentally obtained red curve in
Fig. 4(a) in [1]. Both figures describe the number of
produced atoms from molecules: in our case it was shown
as a function of β but in the case of experiment in [1] it was
shown as a function of time after placing the molecules at
resonance. We attribute this to the fact that the timescale
τeff ¼ g=β in our model characterizes the effective time that
the system spends sufficiently close to the resonance to
dissociate themolecules during the sweep.Thus, both figures
describe similar physics: it takes initially certain critical time
for the process to produce ∼ logN atomic pairs before they
induce the positive feedback that makes OðNÞ of the
remaining molecules dissociate due to superradiance [28].
This indicates a possibility that our dynamic phase transition
can be confirmed with the setup that was used in [1].
Coherent thermalization.—Consider now the effect of

the dispersion εk of atomic modes in the general model
Eq. (1). For the forward sweep, the integrability means that
only higher energy atomic pairs can influence the lower
energy ones. Hence, if the initial state is the atomic ground
state, then the higher energy states remain empty at the end,
and Eq. (10) applies to this case as well. According to it, we
predict even for multichannel reactions an exponential
dependence of the reaction efficiency on 1=β for fast
sweeps and a power-law tail, N − hmi ∼ 1=β, in the limit
of slow transitions.
For the reverse process, if the initial state has N

molecules, then Eq. (11) applies to the first encountered
resonance. It also applies to the following resonances but
the number of entering molecules must be reduced by the
amount that has already dissociated. If there are many
resonances, all molecules will dissociate.
The final multimode population distribution has a very

simple structure. To demonstrate this, we write the joint
transition probability to produce n1 atomic pairs in the first
and n2 pairs in the second resonance:

Pn1;n2 ¼ Pn1x
N−n1−n2ðxN−n1−n2þ1; xÞn2 ; ð15Þ

and compare two probabilities of the populations that are
different by moving one atomic pair from the lower energy
mode to the higher energy one. Taking the ratio of such
probabilities, we find

Pn1−1;n2þ1

Pn1;n2

¼ e−2πg
2=β; ð16Þ

which does not depend on n1 and n2. The same is true for
any pair of the nearest energy atomic modes. This means
that all probabilities satisfy the detailed balance conditions
that are found in the Gibbs distribution:

Pfnsg ¼
1

R
e−

2πg2

β

P
∞
s¼1

snsδ

�
N −

X
s

ns

�
; ð17Þ

where s enumerates the atomic states according to their
increasing energy ordering εs in Eq. (3), fnsg is the vector
of the final atomic asbs-mode populations, and R is a
normalization factor; the delta function follows from the
particle conservation.
Physically, Eq. (17) would be thermal only for

a linear energy dispersion, s ¼ Dεs, where D is the
density of states. For a two-dimensional trap geometry, the
atomic energy dispersion, indeed, is expected to be
linear becauseD ¼ S∬ ½dpxdpy=ð2πÞ2�δ½E − p2=ð2maÞ� ¼
S
R
∞
0 ½pdp=ð2πÞ�δ½E − p2=ð2maÞ� ¼ Sma=ð2πÞ, where ma

is the atomic mass, px;y are the momentum components,
and S is the area of the trap. Hence, for the time-linear
sweep through all resonances, we predict that the atomic
distribution after the molecular dissociation may be ther-
malized at temperature

kBT ¼ β

2πg2D
¼ β=ðSmag2Þ: ð18Þ

The physical coupling g decays with S, so only the linear
dependence on β is our testable prediction. The dynamic
phase transition in Fig. 1(d) now has a new interpretation:
the final atomic distribution coincides with the equilibrium
one for free bosons, which form a BEC below a critical
temperature. Indeed, the first encountered resonance is
macroscopically populated if according to Eq. (14) we have
f > 1, which corresponds to the condensation of atoms in
this mode.
We also mention an intriguing similarity of this thermal-

ization with simulations of Unruh temperature viewed in an
accelerating reference frame by a parametrically modulated
BEC [29]. However, unlike [29], our thermalization is
found for our system globally, without tracing out the state
of unobserved atoms.
Finally, we comment on the role of degenerate channels,

e.g., with εs ¼ εsþ1 for some s. The probability

PðnÞ≡ X
nsþnsþ1¼n

ðPns þ Pnsþ1
Þ ð19Þ

is a continuous function of δε≡ εsþ1 − εs in the vicinity of
δε ¼ 0. Indeed, if δε does not change sign, this follows
from integrability, and changing sign of δε merely corre-
sponds to changing channel indices s and sþ 1, which
does not affect PðnÞ. Hence, the net number of atoms
produced in both modes at δε ¼ 0 is the same as for δε ≠ 0.
Inductively, we find that the probability to find n atomic
pairs in an arbitrarily degenerate atomic mode is the same
as when such modes are nondegenerate. This means that if
we coarse-grain energy into sufficiently large intervals the
effect of degeneracy on the atomic energy distribution will
be suppressed after the characteristic time τeff of the
passage through the resonance.
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Phase coherence.—The system after the reaction is still
described by a coherent state vector with possibly nontrivial
quantum correlations. This can be revealed by measuring
the relative phases of the final states, which can also be
found exactly. In [16], we show how such phases can be
derived but we postpone the detailed analysis to a follow-up
work, and consider here only the adiabatic limit in order to
illustrate possible future research directions.
Let the molecular condensate be in a coherent state,

which is a good approximation for an equilibrated bosonic
system [30]:

jαmi ¼ e−jαmj2=2
X∞
n¼0

αnmffiffiffiffiffi
n!

p jni: ð20Þ

The condensate phase ϕM is then defined from hαmjΨ̂jαmi∼ffiffiffiffi
N

p
eiargðαmÞ, where N ¼ jαmj2, so ϕM ¼ argðαmÞ. Consider

the adiabatic dissociation of this condensate into a single
atomic mode:H ¼ −βtΨ̂†Ψ̂þ g½Ψ̂†â2 þ Ψ̂ðâ†Þ2�. Each jni
in Eq. (20) is then converted to eiϕn j2nia, where a marks
the atomic states. In [16] we derive an exact formula for the
scattering phase of the complete dissociation amplitude:

ϕn ¼ 3nπ=4 −
Xn
k¼1

argΓ½iðg2=βÞðkþ 1Þ�: ð21Þ

For g2=β ≫ 1 it is simplified because, for any x ≫ 1,
π=4þ argΓ½ix� ≈ xðlogex − 1Þ. As t → þ∞, the atomic
state becomes

jAi ¼ e−jαmj2=2
X∞
n¼0

αnmffiffiffiffiffi
n!

p eiϕn j2nia: ð22Þ

This state contains information about the original molecular
state. Thus, imagine that the molecular condensate has a
vortex, such that ϕM winds by 2π around some spatial
point. Let us also assume, phenomenologically, that locally
the dynamics in a linear field ramp is described by our
model. The topological property is then preserved after the
reaction because the circulation

−i
Z

2π

0

hAj d
dϕM

jAidϕM ¼ 2πN ð23Þ

remains the same as it would be for the initial state jαmi.
Hence, the stimulated reaction should preserve vortexlike
spatial distributions of particles and currents but the
emerging atomic state has nontrivial correlations.
The state jAi is far from a coherent state

because hAjâjAi ¼ 0. To test whether it can be close to
a squeezed state, in Fig. 2(a) we plot a numerically
calculated ratio jhAjâ2jAij=N as a function of g2=β. Its
values close to 1 at large N indicate the emergence of the
squeezed state. We find that this ratio is generally small

except at narrow resonant values of width ∼1=
ffiffiffiffi
N

p
near

g2logeðg2N=βÞ=β ¼ 2πn, n ¼ 1; 2…, where it exceeds 0.5.
Figure 2(b) shows that the nonclassical correlations are
illustrated better by the overlap of a typical jAi (at
nonresonant values of the parameters) with coherent states
jαi, revealing two peaks with opposite signs of the
corresponding α. This makes jAi akin to a macroscopic
cat state, whose origin can be traced to the even parity of all
states j2nia that contribute to jAi. As ϕM changes from 0 to
2π, the axis connecting the two peaks rotates by angle π so
that the peaks exchange their positions at the end. This is a
topological consequence of the geometric phase Eq. (23).
This cat state must be fragile against decoherence. Breaking
it down would be in agreement with breaking Z2 symmetry
in the atomic phase that was predicted in [18]. This process,
however, is beyond the scope of our model, so we refer to
[18] for further discussion.
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