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Using 250 neutron star merger simulations with microphysics, we explore for the first time the role of
nuclear incompressibility in the prompt collapse threshold for binaries with different mass ratios. We
demonstrate that observations of prompt collapse thresholds, either from binaries with two different mass
ratios or with one mass ratio but combined with the knowledge of the maximum neutron star mass or
compactness, will constrain the incompressibility at the maximum neutron star density K, to within tens
of percent. This otherwise inaccessible measure of K ,,, can potentially reveal the presence of hyperons or

quarks inside neutron stars.
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Introduction.—The equation of state (EOS) of neutron star
(NS) matter is one of the most fundamental, yet elusive,
relations in physics [1,2]. It lays at the interface between
several disciplines, including nuclear physics, high-
energy astrophysics, heavy-ion collisions, multimessenger
astronomy, and gravitational wave (GW) physics. Our
knowledge of NS matter properties is still partial, mostly
due to the difficulties in studying strongly interacting bulk
matter in the low-energy limit typical of nuclear interactions
[3]. Even the appropriate degrees of freedom are uncertain:
while nucleons are the relevant species around the nuclear
saturation density, n, = 0.16 fm™3, it is still unclear if
hyperons [4,5] or a phase transition to quark matter [6-8]
can appear at densities n 2 2n, in NS interiors.

NS EOS models are experimentally constrained by the
masses of ordinary nuclei, as well as by the energy per
baryon and its derivatives with respect to baryon density n,,
around ny and close to isospin symmetry, i.e., for symmetry
parameter § = (n, —n,)/n, =0, with n, , being the den-
sity of neutrons and protons. If P is the matter pressure, the
nuclear incompressibility of cold nuclear matter at fixed
composition is defined as

oP
K(n,.8) =92 . (1)
anb T=0,6=const

It describes the response of matter to compression and
its value can be currently measured only for symmetric
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matter at saturation density K, although with some
controversy [9-13]. While isoscalar giant monopole reso-
nance experiments for closed-shell nuclei provided
K = (240 +20) MeV, studies based on open-shell
nuclei reported quite different values in the range 250-
315 MeV [12] or even values around 200 MeV [13].
Nevertheless, K, is unconstrained at densities and com-
positions relevant for NSs (far from n ~ ny and 6 = 0). In
particular, according to the solutions of the Tolman-
Oppenheimer-Volkoff (TOV) equation, the NS central
density increases monotonically with the NS mass and at

the stability limit, corresponding to mass and radius (MTQV,

RIOV) can reach nfOV ~ 4-7n,, depending on the EOS.
Moreover, for n;, 2 ng, f-equilibrated matter is very neutron
rich, ¢4 ~ 1.

In addition to nuclear constraints, astrophysical
NS properties provide useful insights on the EOS.
Constraints derived from the observation of massive,
isolated NSs [14-20], from GW signals [21,22], and
multimessenger observations of binary neutron star
(BNS) mergers [23-28], or by their combination [29,30],
are very informative about the high-density regime. A key
phenomenon in this respect is the prompt collapse (PC) to
black hole (BH) of the merger remnant, since this behavior
can influence both the GW and electromagnetic (EM)
signals produced by BNS mergers [31-36]. The PC
behavior of equal mass BNSs was extensively explored
in Refs. [37-43]. It was shown, for example, that the
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threshold mass for PC My,, normalized to MIQY, linearly

correlates with the maximum compactness, defined as
CIOV = GMIQY /(RIOV ¢?), where ¢ and G are the speed
of light and the gravitational constant, respectively, as well
as with other NS equilibrium properties. More recently,
also the study of asymmetric BNS mergers has received
attention [42,44-46]. Bauswein et al. [42,44] concluded
that PC in asymmetric BNSs usually occurs for masses
equal or smaller than in the equal mass case, with the
possible exception of modest asymmetries and very soft
equations of state. The total mass reduction is stronger for
more extreme mass ratios and it has a nontrivial depend-
ence on the NS EOS. Tootle ef al. [45] suggested instead a
quasiuniversal relation. In all these Letter, several fitting
formulas to numerical results were provided.

In this Letter, we show that K ,,, the incompressibility
of nuclear, p-equilibrated matter at n1OY, determines the
behavior of BNS mergers close to PC and, in particular,
their dependence on the mass ratio. Our results stem from
the largest set of numerical relativity simulations of irrota-
tional, asymmetric binaries with finite-temperature, com-
position-dependent microphysical equations of state to
date. We demonstrate that the detection of My at two
different mass ratios can provide a direct measurement of
K.« In a regime otherwise inaccessible. Additionally, we
suggest that its value can yield information about the
relevant thermodynamics degrees of freedom close to nTOY .

Methods and models.—We simulate 250 irrotational
BNS mergers with different gravitational masses M =
M+ M, € [2.786 My,3.3 My] and mass ratios g=
M,/M, € {0.6,0.65,0.7,0.75,0.85,1}. We perform a
series of simulations at fixed g while changing M to
explore the onset of the PC behavior and determine
My, (q). For the definition of My,(g) and its numerical
error My, (q), we follow Refs. [42,43,47], monitoring the
minimum of the lapse function throughout the computa-
tional domain. Simulations are performed with the same
codes and setup as in Ref. [43]; ¢ =1 data are from
Ref. [43], while g # 1 data are presented here for the first
time. See the Supplemental Material [48] for more details,
which includes also Refs. [49-91].

To span present uncertainties, we consider six finite-
temperature, composition-dependent NS equations of state.
Four are purely nucleonic and widely used: BL [92,93],
SFHo [94], HS(DD2) (hereafter DD2) [95,96], and LS220
[97]. Additionally, we consider an EOS including hyper-
ons, HS(BHBA@) (hereafter, BHB) [98], and one including
a phase transition to quark matter, DD2qG, also presented
in Ref. [43]. In both cases, the nucleonic baseline is DD2.
In Fig. 1, we present the nuclear incompressibility of
neutrinoless, f-equilibrated, cold NS matter K, defined
as in Eq. (1) but for § = 6,4, for the six different equations
of state above as a function of n,. For each EOS we
highlight K ., = K(nIQY). It is striking that the properties
in the low-density regime (n;, < 2n,) do not necessarily
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FIG. 1. Nuclear incompressibility K., of cold p-equilibrated

nuclear matter as a function of baryon density for the EOS
employed in this Letter. Solid markers correspond to K., i.e.,
K., at the central density of the heaviest irrotational NS.

correlate with those at n,, ~ nfQY. Moreover, the BL, SFHo,
and LS220 equations of state, despite being softer than the
DD2 EOS, reach larger nIQY and provide similar, if not
larger, K .x-

Results.—Our simulations robustly indicate that PC
occurs as the maximum of the rest mass density throughout
the computational domain, n,,, approaches nlOV at
merger. With the exception of the DD2qG EOS, for which
Npax ~ 0.8-1.2nTOV " for the heaviest non-PC BNS we
observe ny,, ~ 0.75-0.95110V at the first remnant bounce,
with larger values usually associated with g ~ 1. Two
opposite effects influence the evolution of n,,,, with respect
to g. On the one hand, for a given M, binaries with smaller
q’s have smaller orbital angular momentum and the NS
cores are more prone to fuse (and thus to increase 7,
toward nIOV) due to the smaller rotational support [42,44].
On the other hand, the nuclear incompressibility usually
increases as n,,, grows, providing a larger nuclear repul-
sion that contrasts its further increase. Since PC is observed
for ny, ~niOV it is understandable that K, is the
incompressibility value relevant for the PC behavior.

To analyze the dependence of PC on K ., , in Fig. 2 we first
consider f(q) = My (q)/My(g = 1) for all equations of
state, where (to be conservative) the error bars have been
obtained by propagating the errors both on My,(¢) and
My (g = 1). Values of My, and My, are reported in the
Supplemental Material [48]. We first observe that our results
do not have a universal behavior for the different equations of
state. Second, we notice that a variation of almost a factor of
1.7 in g has a small effect on My, (q), with the corresponding
variation in f(g) ranging between 3% and 8%, larger for
equations of state with a smaller K,,,,. This is broadly
compatible to what was observed in [42,44-46] and should
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FIG. 2. Threshold PC masses normalized to the ¢ = 1 case as a
function of ¢ for all the equations of state used in this Letter.
Dashed lines correspond to Eq. (2) fit.

be compared with the larger (<20%) variation in MOV or
My (g =1)/MLQY reported in Refs. [34,38,40-43,47].

Focusing on the behavior of f(g) for 0.7 <g <1 we
observe that, depending on the EOS, f(g) can decrease,
stay approximately constant, or even increase as ¢
decreases (see also Refs. [44,46,99]). We interpret this
as the result of the interplay between the binary orbital
angular momentum and the incompressibility of nuclear
matter, in light of the merger dynamics. For BNSs with
g <1 and M =~ My, the central density inside the more
massive NS ranges is 0.40-0.49 n,,., (depending on the
EOS) and the merger is driven by the fusion of two
comparable NS cores. If K., increases steeply enough
with n,,,,, nuclear repulsion contrasts efficiently gravity-
driven compression. The net result is that for equations of
state with a relatively large K., (as BL, SFHo, and DD2),
My, (g S 1) can stay rather constant or even increase as g
decreases. On the other hand, if K., does not increase
significantly with n;, and K, is relatively low (as for
DD2qG and BHB), nuclear repulsion is not enough to
counterbalance the lack of rotational support and PC occurs
for My(q < 1) < My(q = 1).

Moving to 0.6 < g < 0.7, we notice a clear change of
behavior: f(g) decreases as g decreases for all equations of
state. But, once again, the variation depends sensitively on
K . equations of state characterized by a smaller K,
result not only in smaller f(g), but also in larger relative
variations with respect to f(¢~0.7). We explain this
transition in terms of the different merger dynamics. For
BNSs at the PC threshold and with ¢ < 0.7, the central
density inside the more massive NS increases to 0.5-0.57
ntOV "~ while the secondary NS is more significantly
deformed and tidally disrupted during the last orbits. As
q decreases, the denser core of the more massive NS is
compressed by more massive streams of accreting matter
[33,36,42,100,101]. The nuclear incompressibility still
opposes compression, but less efficiently than in the

0.7 < g £ 1 regime. K, still provides a measure of the
NS matter resistance to compression in the relevant density
interval and different equations of state result in different
relative variations.

Our data qualitatively agree with those from independent
simulations recently reported in Refs. [41,45,46]. However,
quantitative differences comparable to the overall variation
observed in our results are found. This is possibly due to
different definitions of PC threshold, gravity treatment, or
numerical resolutions. A comparison with the some of the
available fits is reported in the Supplemental Material [48].
Moreover, our extended set of equations of state indicates a
subleading but significant and systematic EOS dependence
emerging for asymmetric binaries, in contrast to a quasiu-
niversal behavior [45].

Figure 2 suggests the existence of two different regimes,
separated by 0.7 < g < 0.75, which is largely independent
from the EOS. In each of the two regimes, f(q) is well
described by a linear relation. Thus, for each EOS we fit our
data by considering

aq+p it g<q,

i) =ata)a +pia) = {2471

if ¢ > 3.

We fix f3;, in Eq. (2) by imposing the continuity of f(g) at
g =g and f(q = 1) = 1. Moreover, we assume § = 0.725
by closely inspecting Fig. 2. Least-square fits (dashed lines)
are performed on the two parameters «; ;,, corresponding to
the slopes of the two linear regimes. The residuals relative
to the errors are always smaller than 0.5 and without clear
systematic trends both with respect to the EOS and g.
Our simulations reveal a correlation between a;;, and
K ax» Supporting the interpretation that the latter is one of
the key properties that control the PC. In Fig. 3, we
represent «;;, with their uncertainties as a function of
K nax for each EOS. Given the reduced number of equations
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FIG. 3. Slopes of the fitting coefficients ¢, ;, for data in Fig. 2 as

a function of K ,,. Both slopes show a trend with K., that we
fitted with a linear function (dashed lines).
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of state and the relatively large uncertainties, we fit o; ;, with
a first-order polynomial in K,,,, (dashed lines in Fig. 3),

ap=—(22+1) TeV 'K, + (0.58 £0.01),
a, = —(4.7+1.0) TeV' K,y + (0.064 £ 0.017).  (3)

The slopes of the linear behaviors observed in Fig. 2
usually decrease as the incompressibility increases. This
confirms that equations of state with a large incompress-
ibility provide a possible increase in My, for § < ¢ < 1 and
a less steep decrease for g < g.

Discussion.—Our results suggest that the determination
of My, at two different g’s, g, ,, allows one to determine
K ax by solving

_ a<Kmax9 QI)ql +ﬂ(a)
B (X(Krnax’ qZ)‘]Z +ﬁ(a> , (4)

Mth(‘ll)
Mth(%)

where a and f are defined consistently with Eqgs. (2) and
(3). To test this, we repeat the previous fits excluding results
from the SFHo equations of state. The new fitted coef-
ficients @}, are compatible to within uncertainties with a; ,
in Eq. (3). We deduce K ,,, for SFHo using these new fits
and the My (g) SFHo results at two different ¢’s. In
particular, we randomly sample the intervals [My(q) £
6My,(q)/2] 1000 times to set simulated values for the
threshold masses My, (¢, ») and to compute K ,,, by solving
Eq. (4). We finally extract the average relative discrepancy
between the computed and actual values. For example,
using My,(g = 0.65) and My,(g = 0.85), we recover K,
to within 2% of its actual value. The uncertainty increases
when considering My,(¢ = 0.7) and My, (¢ = 0.85). In this
case, K, 1s recovered to within 15%. Our method does
not necessarily require the knowledge of My (¢q) at two
q # 1. For example, using My, (g = 0.7) and My (q = 1)
we recover K, within 3.5%. The above discrepancies on
K.« are compatible with the uncertainties implied by
Fig. 3.

To further challenge our method, we consider the
independent results for My,(¢) from Ref. [45] obtained
for irrotational NSs and for the TNTYST EOS [102], an
EOS not included in our sample and for which K, >
20 GeV [We notice, however, that the TNTYST EOS
becomes acausal close to nlOY].We consider the a;, fits,
Eq. (3), and we solve Egs. (4) and (5) using My, (¢ = 0.7)
and My (g =0.9). Despite possible systematical
differences related to the different way to determine My,,
we recover the expected value of K, to within 25%
(~6 GeV) of its actual value.

Prompted by these results, we investigate a direct
correlation between CTOV and K,,,, and we find that the
values of K., can provide information on the relevant
degrees of freedom in ultradense matter. In Fig. 4, we
present K., as a function of CIOV for a large set of
equations of state. In particular, we selected equations
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/ 2.6
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FIG. 4. K. as a function of the compactness of the heaviest
NS for a large sample of equations of state. Circles correspond to
nucleonic equations of state, while squares and stars correspond
to equations of state containing hyperons or undergoing a phase
transition to quarks, respectively.

of state that stay causal up to ntO¥ and for which

MOV > 1.97 M. More detailed information can be found
in the Supplemental Material [48]. Different symbols refer
to different particle contents, while colors refer to MTOV.
We suggest that large K, (=15 GeV) are more easily
associated with purely nucleonic equations of state, while
equations of state containing hyperons or showing a phase
transition to quarks are characterized by small
K nax (S15 GeV). A tighter threshold at 12 GeV can be
observed if only two equations of state containing just u
and d quarks, out a sample of 34 equations of state
containing quarks or hyperons, were removed. Moreover,
K .« can be fitted in good approximation with a power law,
K max = 7(CEOV)°. Standard least-squared methods provide
y=1(9.2+54) TeV and & =5.67 +0.50. Despite not
being trivial, such a relation is not surprising, since both
MTOV and RTOV depend on the equilibrium response of the
heaviest NS to radial perturbations for n, ~ nfoV, and thus
on K,... Moreover, it provides a possible connection
between our findings and previous, different fits for My,
expressed in terms of MTQV and CTOV, both for symmetric
and asymmetric mergers [39,40,42-44,46]. For example,
we have repeated our analysis in terms of CIOV rather than
K., finding comparable results, as reported in the
Supplemental Material [48]. Even if this relation directly
connects K, to CIOV, we stress that K,,,, provides a
cleaner and more intuitive physical interpretation of the PC
behavior for g # 1.

This Ky (CIQY) relation, combined with the linear
relation My (q = 1)/MIQY = aCIQY¥ + b first proposed
in Ref. [39] but with coefficients from Ref. [43], suggests
that MIQY can be also related t0 K, and My (g = 1),

MTOV _ Mth(q = 1)

max ~— . 5
% = K1) 4 b ®)
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Equations (2) and (5) together suggest that K,,,, can be
estimated by the knowledge of only one My, (gq), if MTQY is

known,

My, (q)
MERN [a(K ax /7)° + D]

= a(Kmax’ Q>q +ﬁ(a) (6)

For example, using the ), fits while employing MY

and My,(¢g = 0.85) SFHo results as input data, we recover
Konax and CIOV to within 40% and 1.6%, respectively.
Comparable results were obtained from smaller ¢’s.

The analogy between the definition of K, and the square
of the speed of sound of NS matter, ¢? = 0P/ d€|T:O’5cq,

where € is the density of internal energy, suggests that the
measurement of the PC threshold at different ¢g’s can also
provide constraints on the value of ¢Z close to nTOY . Indeed,
the a and f3 coefficients of Eq. (2) also correlate with ¢2 in a
comparable way as with K,,, and CTOV, as visible in the
Supplemental Material [48]. Constraints on ¢, can provide
further insight into the physics governing the EOS of
nuclear matter (see, e.g., Refs. [103,104]).

The larger detection horizon associated with massive
BNS mergers suggests that, as in the case of GW190425
[105], PCs are a viable observational phenomenon asso-
ciated with a significant fraction of BNSs that will become
accessible in the next GW observing runs [106,107] and
with third generation GW detectors [108—110]. While
current GW detections allow the precise measurement of
the chirp mass and, up to a certain extent, the total mass, the
mass ratio is more uncertain. High enough signal-to-noise
ratios and good sky localizations favoring followup EM
observations will be key to provide better constraints on g.
We estimate the possible impact of the uncertainties on My,
and on ¢ on the estimate of K, by solving again Eq. (4),
using the a}, fitted coefficients (i.e., considering SFHo
as our underlying EOS and removing it from our fitting
sample). We randomly sample both My and g within
My, £ AMy, and g = Ag, where AMy, and Ag are the
uncertainties in the determination of My,(g). In the case of
qg = 0.85 and g = 0.65, to determine K,, with at least
30% accuracy at 90% confidence level, we estimate
AMy, <£0.025 My and Ag <0.05. For ¢ =0.85 and
g = 0.70, the uncertainties should decrease to AMy, <
0.01 My and Ag <0.025 to get a similar accuracy. The
difference between the two cases proves that, due to the
larger slope of My (gq) at g < 1, the determination of
My, (q) for very asymmetric systems is more constraining.
Such uncertainties are within reach of future observations
and detectors [111]. More theoretical PC studies will be
needed to reduce systematic uncertainties and include more
detailed physics. Nevertheless, our results clearly indicate
a new and unique way to access critical information on
extreme density nuclear physics using observations of
promptly collapsing BNS mergers.
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