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The doubly charm tetraquark with flavor ccūd̄ and isospin I ¼ 0 is investigated by calculating the DD�

scattering amplitude with lattice QCD. The simulation is done on CLS ensembles with dynamical u=d, s
quarks and mπ ≃ 280 MeV for two charm quark masses, one slightly larger and one slightly lower than the
physical value. The scattering amplitudes for partial waves l ¼ 0, 1 are extracted near threshold via the

Lüscher method by considering systems with total momenta PL=ð2πÞ ¼ 0; 1;
ffiffiffi
2

p
; 2 on two spatial

volumes. A virtual bound state pole in the DD� scattering amplitude with l ¼ 0 is found 9.9þ3.6
−7.1 MeV

below theDD� threshold for the charm quark mass closer to the physical value. This pole is likely related to
the doubly charm tetraquark discovered by LHCb less than 1 MeV below the D0D�þ threshold. Future
lattice simulations closer to the continuum limit and physical quark masses would be valuable to establish
this connection systematically.

DOI: 10.1103/PhysRevLett.129.032002

Introduction.—The LHCb Collaboration recently dis-
covered a doubly charmed tetraquark Tcc with flavor ccūd̄
just 0.36(4) MeV below D0D�þ threshold [1–3]. Its flavor
is based on the decay channel D0D0πþ, and it has isospin
I ¼ 0 since no state was found in the decay D0Dþπþ. The
total spin and parity JP have not been determined from
experiment. This is the longest-lived hadron discovered
with explicitly exotic quark content. It has striking simi-
larities with the well-known Xð3872Þ [4] that lies very close
to D0D̄�0 threshold. Here we aim at the theoretical
investigation of near-threshold exotics from first principles.
Several phenomenological models predicted a doubly

charm tetraquark ccūd̄ with I ¼ 0 and JP ¼ 1þ within an
energy range �100 MeV around the DD� threshold, e.g.,
Refs. [5–13]. Many of these models have the possibility to
identify a bound state but not a resonance. One of the more
sophisticated quark model calculations predicted the bound
state 1.6� 1.0 MeV below DD� threshold and concluded
that the molecular Fock component dominates over the
diquark-antidiquark component [12]. Within a molecular
picture, a light vector meson exchange is argued to
induce attraction [14,15], whereas one-pion exchange
induces slight repulsion [16]. The binding energy of a
bound state in the QQūd̄ system is found to decrease

with decreasing heavy quark mass mQ and with increasing
light quark mass mu;d [10,12,17–25]. Thus, the doubly
bottom tetraquarks bbūd̄ and bbuswith JP ¼ 1þ are deeply
bound according to a variety of theoretical approaches
[10,12,17–19,21,22,24], whereas ccūd̄ is expected on the
verge of binding and requires a careful theoretical study
within QCD.
In order to theoretically confirm the existence of a doubly

charmed tetraquark from first principles, one has to establish
a pole in the corresponding scattering amplitude tðEcmÞ that
depends on the center-of-momentum (cm) energy. This is
particularly important in finite-volume formulations, such
as lattice QCD, since this state does not lie well below the
threshold but is expected near threshold. Lattice QCD
represents the only nonperturbative first-principles approach
with quantifiable systematic and statistical uncertainties to
study QCD in the hadronic regime. It enables the determi-
nation of the scattering amplitudes from deviations of finite-
volume energies from the noninteracting scenario [26].
However, the scattering amplitude in this channel has not
been determined using lattice simulations yet. The lattice
study in Ref. [17] extracted the finite-volume energy of the
ground state using meson-meson and diquark-antidiquark
interpolators for a wide range of mπ ≥ 260 MeV and three
lattice spacings. The continuum and chiral extrapolations
led to an energy level −23� 11 MeV relative to the DD�
threshold. This indicates the presence of interactions
between D and D� but does not prove the existence of a
pole. The finite-volume energies have been extracted in
Ref. [27], and the ground state energy was found to be
consistent with the DD� threshold.
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This Letter investigates if a state with flavor ccūd̄, I ¼ 0,
and JP ¼ 1þ exists in the vicinity of DD� threshold. For
this purpose, the DD� scattering amplitude tðEcmÞ near
threshold is extracted within lattice QCD for the first time.
It is determined from finite-volume energies via the
Lüscher method [26]. The D� does not decay strongly to
Dπ at the simulated mπ ≃ 280 MeV, and the analyzed
energy region is below the DDπ and D�D� thresholds;
therefore, we consider one-channel DD� scattering. We
demonstrate that the scattering amplitude indeed has a pole
at Ep

cm slightly below threshold.

First we present the calculation of the energy levels.
Then we discuss the extraction of the scattering amplitude
and the poles in it.
Ensembles and single-hadron masses.—We utilize two

ensembles with u=d, s dynamical quarks provided by the
Coordinated Lattice Simulations consortium [28,29]. The
lattice spacing is a ¼ 0.08636ð98Þð40Þ fm, and mu and md
are degenerate and heavier than in nature, corresponding to
mπ ¼ 280ð3Þ MeV. There are 255 configurations on spatial
volume N3

L ¼ 243 and 492 configurations on 323 [30]. The
scattering amplitude is extracted for two values of the charm
quarkmass,one slightlyheavier thanphysical andone slightly
lighter [31]. The masses of the relevant hadrons D and D�
are presented in Table II. The heavier charm quark mass is
closer to the physical value and provides our main result.
Interpolators and finite-volume energies.—In the non-

interacting limit, theDD� system has discrete energies on a
periodic lattice of size L ¼ NLa,

Eni ¼ EDðp⃗1Þ þED�ðp⃗2Þ; p⃗i ¼ n⃗i
2π

L
; n⃗i ∈ N3

L ð1Þ

with Econ
Hðp⃗iÞ ¼ ðm2

H þ p⃗2
i Þ1=2 in the continuum limit. The

noninteracting energies are shown by lines in Fig. 1.
The finite-volume energies in the interacting theory

are determined from the correlation matrices CijðtÞ ¼
hOiðtsrc þ tÞO†

jðtsrcÞi, where Oi refers to operators that
annihilate states with the desired quantum numbers. The
ccūd̄ system is investigated in inertial frames with total
momenta jP⃗jL=ð2πÞ ¼ 0; 1;

ffiffiffi
2

p
; 2 and finite-volume irre-

ducible representations (irreps) in Table I. These constrain
DD� scattering in various partial waves l, of which l ¼ 0 is
expected to dominate near threshold. We utilize only
meson-meson interpolators, where each meson is projected
to a definite momentum,

ODD� ¼
X

k;j

AkjDðp⃗1kÞD�
jðp⃗2kÞ; p⃗1kþ p⃗2k¼ P⃗

¼
X

k;j

Akj½ðūΓ1cÞp⃗1k
ðd̄Γ2jcÞp⃗2k

−ðd̄Γ1cÞp⃗1k
ðūΓ2jcÞp⃗2k

�

ð2Þ

FIG. 1. Center-of-momentum energy Ecm ¼ ðE2 − P⃗2Þ1=2 of
the ccūd̄ system normalized by EDD� ≡mD þmD�, for the
heavier charm quark mass in various finite-volume irreps. The
lattice energy levels are shown by large circles and squares:
The scattering analysis employs the blue and green circles. The
noninteracting DD� energies (1) are shown by lines: The
operators related to black lines are employed, while those related
to gray lines are omitted. Label [2] in Tþ

1 ð0Þ refers to the
multiplicity of noninteracting level Dð1ÞD�ð1Þ. The orange stars
represent the analytically reconstructed energy levels based on
the fitted scattering amplitudes and are slightly horizontally
shifted for clarity.

TABLE I. Total momenta P⃗, spatial lattice symmetry group (LG), irreducible representations (ΛP), and interpolators considered for
the system ccūd̄, together with total spin-parity JP and partial wave l of DD� scattering that contributes to each irrep (only J; l ≤ 2 are
listed). The interpolators are denoted by ½2� when two linearly independent combinations of momenta and polarizations are employed,
e.g., Ol¼0;2 for Dð1ÞD�ð1Þ in Tþ

1 [32].

ID P⃗ LG ΛP JP l Interpolators: M1ðp⃗2
1ÞM2ðp⃗2

2Þ
1 (0,0,0) Oh Tþ

1
1þ 0,2 Dð0ÞD�ð0Þ; Dð1ÞD�ð1Þ½2�; D�ð0ÞD�ð0Þ

2 (0,0,0) Oh A−
1 0− 1 Dð1ÞD�ð1Þ

3 ð0; 0; 1Þð2π=LÞ Dic4 A2 0−; 1þ; 2− 0,1,2 Dð0ÞD�ð1Þ; Dð1ÞD�ð0Þ
4 ð1; 1; 0Þð2π=LÞ Dic2 A2 0−; 1þ; 2−; 2þ 0,1,2 Dð0ÞD�ð2Þ; Dð1ÞD�ð1Þ½2�; Dð2ÞD�ð0Þ
5 ð0; 0; 2Þð2π=LÞ Dic4 A2 0−; 1þ; 2− 0,1,2 Dð1ÞD�ð1Þ
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with two choices ðΓ1;Γ2jÞ ¼ ðγ5; γjÞ; ðγ5γt; γjγtÞ through-
out. Operators are shown in Sec. I of Ref. [32]. All
quark fields are smeared according to the “distillation”
method [31,40] with 60(90) Laplacian eigenvectors
for NL ¼ 24ð32Þ.
The diquark-antidiquark interpolators ½cc�½d̄ ū� are not

considered in this Letter. This is justified as it was observed
in an earlier lattice calculation that such operators
have negligible effects on the low-lying energies [27].
Indications from phenomenological studies on the domi-
nance of molecular DD� Fock components [12] also
suggest that DD� interpolators are sufficient to compute
the energies faithfully. Furthermore, the application of two
operators Dγ5D

�
γj and Dγ5γtD

�
γjγt for each momentum

combination is expected to provide enough variety to
extract the energy levels reliably.
The energies Elat

n are extracted from single-exponential
fits to the eigenvalue correlators λðnÞðtÞ ∝ e−E

lat
n t of the

generalized eigenvalue problem CðtÞvðnÞðtÞ ¼ λðnÞðtÞ×
Cðt0ÞvðnÞðtÞ with t0 ¼ 4 [42]. In order to mitigate small
deviations of single-hadron energies Elat

Hðp⃗Þ from Econ
Hðp⃗Þ

due to discretization effects, we take En ¼ Elat
n þ Econ

Dðp⃗1Þ þ
Econ
D�ðp⃗2Þ − Elat

Dðp⃗1Þ − Elat
D�ðp⃗2Þ as the final energies for the

scattering analysis, as argued and utilized on the same
ensembles in Refs. [31,33].
The resulting finite-volume energies in the first three

irreps are presented in Fig. 1 for the heavier charm quark
mass. The figure displays the energies Ecm ¼ ðE2 − P⃗2Þ1=2
in the center-of-momentum frame in units of energy of
theDD� threshold. The large circles and squares refer to the
energy levels extracted from the lattice simulation. The
energy levels have nonzero energy shifts with respect to
the noninteracting DD� energies, indicating nontrivial
interactions. These energy shifts render information on
the DD� scattering amplitudes. We find similar observa-
tions at the lighter charm quark mass [32].
Scattering analysis.—The scattering amplitude t in

S ¼ e2iδ ¼ 1þ ið4p=EcmÞt depends on energy, the partial
wave l, and J ¼ js − lj;…; jsþ lj, where s ¼ 1 for the
DD� system. We approximate their energy dependence
near threshold with two terms of the effective range
expansion in p2 ([43])

tðJÞl ¼Ecm

2

1

pcotδðJÞl − ip
; p2lþ1 cotδðJÞl ¼ 1

aðJÞl

þ rðJÞl

2
p2;

ð3Þ

where p ¼ jp⃗j is the spatial momentum of D and D� in the
center-of-momentum frame. Each finite-volume energy

level Ecm is related to the tðJÞl ðEcmÞ via Lüscher’s relation
[26] and its generalizations, e.g., Ref. [34]. In order to
constrain the energy dependence of t, the parameters of the
effective range expansion are optimized such that Lüscher’s
relation is simultaneously satisfied for all the energy levels
considered. For the l ¼ 0 partial wave, which dominates
near threshold, we find

p cot δðJ¼1Þ
l¼0 ¼ 1

að1Þ0

þ 1

2
rð1Þ0 p2;

mðhÞ
c ∶að1Þ0 ¼ 1.04ð29Þ fm; rð1Þ0 ¼ 0.96ðþ0.18

−0.20Þ fm: ð4Þ

This fit is shown by the red line in Fig. 2.
This result is robust to various fits we have performed, as

further detailed in Ref. [32]. The JP ¼ 1þ is allowed for the
DD� system with spin one in partial waves l ¼ 0 and l ¼ 2,

which could lead to a partial wave mixing. We find that tð1Þ2

is consistent with zero since the energy levels with
dominant overlaps to Ol¼2 [32] have energies consi-
stent with the noninteracting energy (1). Hence, we assume

tðJÞl≥2 ¼ 0 and negligible mixing of l ¼ 2 with l ¼ 0 in
J ¼ 1 [32]. The energies in blue and green from Fig. 1 are

utilized to constrain the energy dependence of tð1Þ0 in Eq. (4)

and tð0Þ1 . We employ a combination of procedures outlined
in Refs. [35,36] in making our fits [32]. The fit has
χ2=dof ¼ 3.7=5 and renders the parameters in Eq. (4)

for l ¼ 0 scattering and [að0Þ1 ¼ 0.076ðþ0.008
−0.009Þ fm3, rð0Þ1 ¼

6.9ð2.1Þ fm−1] for l ¼ 1 scattering. The fit results for tð0Þ1

render poles significantly below threshold, at energies that
are unconstrained by the energy levels, and therefore we do
not ascribe them any physical significance. The analytically
reconstructed energies based on these tJl are indicated by

TABLE II. Lattice results for the binding energy δmTcc
and the effective range parameters in Eq. (3) at heavier (mðhÞ

c ) and lighter (mðlÞ
c )

charm quark masses, compared to experiment. Note thatmðhÞ
c is closer to the physical value according to the spin averaged charmonium

mass Mav ≡ ð1=4Þðmηc þ 3mJ=ψ Þ. The real part of experimental að1Þ0 is provided. The binding energy δmTcc
≡ ReðEp

cmÞ −mD0 −mD�þ

is obtained from the energy Ep
cm, where the scattering amplitude has a pole. Lattice results are shown with 1σ statistical errors at given

quark masses and lattice spacing; the Tcc is found to be a virtual bound state with δmTcc
< 0 also within 2σ and 3σ error ranges.

mD (MeV) mD� (MeV) Mav (MeV) aðJ¼1Þ
l¼0 (fm) rðJ¼1Þ

l¼0 (fm) δmTcc
(MeV) Tcc

Lattice (mπ ≃ 280 MeV; mðhÞ
c ) 1927(1) 2049(2) 3103(3) 1.04(29) 0.96ðþ0.18

−0.20 Þ −9.9þ3.6
−7.2 Virtual bound st.

Lattice (mπ ≃ 280 MeV; mðlÞ
c ) 1762(1) 1898(2) 2820(3) 0.86(0.22) 0.92ðþ0.17

−0.19 Þ −15.0ðþ4.6
−9.3 Þ Virtual bound st.

Experiment [2,41] 1864.85(5) 2010.26(5) 3068.6(1) −7.15ð51Þ [−11.9ð16.9Þ; 0] −0.36ð4Þ Bound st.
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orange stars in Fig. 1 and agree well with the observed
energies.
The pole in the DD� scattering amplitude and Tcc.—

Before focusing on Tcc, let us briefly review the relation
between hadrons and poles. The existence a hadron state
and its mass is inferred from the pole in the scattering
amplitude tðEcmÞ. The bound state and the virtual bound
state have a pole at a real energy below threshold, and
therefore p2 < 0. A bound state has a pole at p ¼ ijpBj and
is an asymptotic state, e.g., deuteron. A virtual bound state
has a pole at p ¼ −ijpBj and is less familiar; it appears, for
example, in an 1S0 nucleon-nucleon channel [32,37,38].
Finally, the most common poles with Ecm away from the
real axis correspond to decaying resonances, e.g., ρ meson.
We find a virtual bound state pole in the DD� scatte-

ring amplitude tðJ¼1Þ
l¼0 at energy Ep

cm ¼ ðm2
D − jpBj2Þ1=2þ

ðm2
D� − jpBj2Þ1=2. It corresponds to the binding momentum

indicated by the magenta octagon in Fig. 2. We therefore
find evidence for the doubly charmed tetraquark as a virtual
bound state with binding energy

mðhÞ
c ∶δmTcc

¼ Ep
cm −mD −mD� ¼ −9.9þ3.6

−7.1 MeV: ð5Þ

It is situated slightly below DD� threshold, close to the
mass of the doubly charmed tetraquark Tcc discovered by
LHCb [1,2]. The state found on the lattice is strongly stable,
and the pole appears at real energy since D� → Dπ is not

kinematically allowed for mπ ≃ 280 MeV. The Tcc dis-
covered by LHCb decays to D0D0πþ, and the pole is
slightly imaginary, as shown in Fig. 3. The Tcc found in
experiment would be a bound state in the limit of stable

D�þ since the measured að1Þ0 is negative [2].
The quark mass dependence of Tcc and the notion of a

virtual bound state can be most easily illustrated for s-wave
scattering in a purely attractive potential VðrÞ within
quantum mechanics. Explicit toy-model examples are
given in Refs. [32]. The bound state occurs at
p ¼ ijpBj; its wave function falls as eipr ¼ e−jpBjr outside
the potential and is an asymptotic state. As the potential
depth is weakened, the bound state energy approaches
threshold. As the potential is weakened even further so that
it is not attractive enough to form a bound state, the s-wave
bound state typically becomes a virtual bound state. It
occurs at p ¼ −ijpBj, and its wave function eipr ¼ ejpBjr
outside V is not normalizable; therefore, it is not an
asymptotic state. Even so, it gives rise to an abrupt
enhancement in the scattering cross section above the
threshold when the pole is close below threshold. This
enhancement is shown in Fig. 2 for DD� scattering and
appears due to the virtual bound state Tcc in our study.
We expect that the virtual bound state pole found in our

lattice simulation at unphysical u=d masses is related to the
Tcc discovered by LHCb, as detailed in Sec. IVof Ref. [32].
The would-be LHCb bound state is expected to become a
virtual bound state with increasing mu=d. This is sketched
in Fig. 4 for a tetraquark with a significant molecular
DD� component attracted by the Yukawa-like potential

FIG. 3. Pole in the scattering amplitude related to Tcc in the
complex energy plane: our lattice result at the heavier charm
quark mass (magenta) and the LHCb result (orange).

FIG. 2. Top: p cot δðJ¼1Þ
l¼0 for DD� scattering at the heavier

charm quark mass (red line) and ip ¼ þjpj (cyan line) versus p2,
all normalized to EDD� ≡mD þmD� . The virtual bound state
occurs at the momenta indicated by the magenta octagon, where
two curves intersect. Bottom: corresponding DD� scattering rate
N ∝ pjt0j2 above threshold along with the pole position.

FIG. 4. Sketch of the binding energy for the (virtual) bound
state dominated by the molecular component. It is based on a
purely attractive potential VðrÞ and partial wave l ¼ 0 within
quantum mechanics.
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VðrÞ ∝ e−Mr=r, where the mass of the exchanged light
hadron M increases with increasing mu=d.
A near-threshold virtual bound state pole is also

observed for the lighter charm quark mass with a slightly
larger jδmTcc

j, as listed in Table II. This observation is
consistent with the dependence of pole position on mc
sketched in Fig. 4. This arises within quantum mechanics
via the reduced DD� mass for a purely attractive potential
VðrÞ that is assumed to be flavor blind [44].
Conclusions.—We have performed a simulation of DD�

scattering in lattice QCD at mπ ≃ 280 MeV. Unlike other
existing lattice investigations in this regard, we extracted
the near-threshold scattering amplitudes in the flavor
channel ccūd̄ with isospin I ¼ 0. Scattering amplitudes
for partial waves l ¼ 0, 1 are determined via Lüscher’s
method, and a virtual bound state pole is found for the
partial wave l ¼ 0. The doubly charm tetraquark with
JP ¼ 1þ features as a virtual bound state 9.9þ3.6

−7.1 MeV
below threshold in our simulation, that has charm quark
mass slightly larger than physical. We also observe that the
size of the binding energy for this virtual bound state
increases with decreasing charm quark mass.
Outlook.—Future lattice studies are desired to reaffirm

our findings and inferences. The current knowledge could be
improved by adding diquark-antidiquark interpolators,
exploring the dependence on quark masses, and investigat-
ing discretization effects based on improved actions and at
smaller lattice spacings. The simulations at smallermu=d are
required to establishwhether the polewill approach theDD�
threshold. The simulations at physical mu=d will be chal-
lenging due to the strong decaysD� → Dπ andTcc → DDπ,
while the formalism is already available in Ref. [46].
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