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String theory provides a compact integral expression for the tree-level scattering amplitude of an
arbitrary number of light strings. We focus on amplitudes involving a few tachyons and many photons, with
a special choice of polarizations and kinematics. We pick out a particular pole in the amplitude—one
corresponding to successive photon scatterings, which lead to an intermediate state with a highly excited
string in a definite state. This provides a physical process that creates a highly excited string. The observed
erratic behavior of the amplitude suggests that this may serve as a simple and explicit illustration of chaos in
many-particle scattering.
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Introduction.—The essence of classical few-body chaos
is simple to state: under time evolution, a region of phase
space undergoes repeated stretching and folding. A small
and smooth patch of phase space evolves into a highly
intricate and complex structure that spans a vast region of
phase space, while retaining the same volume as the initial
region. As a result, late time observables behave erratically
as functions of the initial conditions.
A similarly simple and clear—and striking—picture of

chaos in quantum field theory has been lacking [1]. In [16]
we proposed that one look for signatures of chaos in the
erratic behavior of scattering amplitudes of a large number
of particles. In this Letter, we will show that this diagnostic
is satisfied in weakly coupled bosonic string theory. We
will look at amplitudes involving a few tachyons and a
large number of photons, with particular kinematics. We
will show that the amplitude is highly erratic under a small
change in the momentum of one of the tachyons or photons.
An amplitude involving a large number of particles is in

general difficult to analyze and, moreover, it is difficult to
know for which kinematics to expect chaos. Here, we
carefully pick the kinematics so that the intermediate state
is a highly excited string. In [17] we studied scattering
amplitudes involving generic highly excited strings, show-
ing that they exhibit erratic behavior, an intuitively plau-
sible result. We claimed that this indicates chaos in a many-
photon amplitude, by arguing that the DDF construction
[18,19] of the excited string vertex operator has a physical
interpretation of forming a highly excited string by repeat-
edly scattering photons off of an initial tachyon. Here, we

verify this claim, by obtaining the many-photon amplitude
directly, for a special choice of photon polarizations.
String scattering amplitudes.—String scattering ampli-

tudes are given by integrals of correlation functions of
vertex operators VðziÞ over the locations zi on the string
worldsheet [20],

A ¼ 1

volðSL2Þ
Z

dzi

�Y
i

VðziÞ
�
; ð1Þ

where the vertex operators are functions of the string
location XμðzÞ, where μ runs over the D dimensional
ambient spacetime. The string field satisfies the
Polyakov action,

−
1

2π

Z
dτdσ

ffiffiffiffiffiffi
−γ

p
γab∂aXμ

∂bXμ; ð2Þ

where we have set α0 ¼ 1=2. We may fix the worldsheet
metric γab to be flat. The Xμ then become free fields, with
the correlation function,

hXμðz1Þ∂Xνðz2Þi ¼
ημν

z12
: ð3Þ

We will be interested in amplitudes involving tachyons
and photons. The tachyon vertex operator is the familiar
∶eip·XðwÞ∶, where pμ is the tachyon momentum, w is the
worldsheet coordinate, and the colons denote normal
ordering. The photon vertex operator is

∶iζ · ∂XðzÞeip·XðzÞ∶; ð4Þ
where the polarization ζ is orthogonal to the momentum,
ζ · p ¼ 0. A trick for working with the photon vertex
operator is to write it as [21]

∶eiζ·∂XðzÞ∶∶eip·XðzÞ∶ ð5Þ
and keep the linear in ζ term.
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The correlation function is now straightforward to compute—through Wick contraction and use of Eq. (3)—and the
amplitude involving any number of tachyons and any number of photons immediately follows,

A ¼ 1

volðSL2Þ
Z

dwidza
Y
i<j

w
pi·pj

ij

Y
a<b

zpa·pb
ab

Y
i;a

ðwi − zaÞpi·pa exp

�X
a≠b

1

2

ζa · ζb
z2ab

−
X
a;i

pi · ζa
wi − za

�����
OðζaÞ

; ð6Þ

where zij ≡ zi − zj, the indices i, j run over the tachyons,
the indices a, b run over the photons, and we are keeping
the linear in ζa term for each a.
The most familiar case is scattering of four tachyons and

no photons—the Veneziano amplitude

A ¼ 1

volðSL2Þ
Z

dwi

Y
1≤i<j≤4

jwijjpi·pj : ð7Þ

Wemay use SL2 symmetry to fix the location of three of the
four points. However, the symmetry cannot be used to
change the ordering of the points, so we must sum over the
orderings. Fixing w1 ¼ 0, w2 ¼ 1, w3 ¼ ∞, we get

A ¼ 2

Z
∞

−∞
dw4jw4jp1·p4 j1 − w4jp2·p4 : ð8Þ

There were 6 distinct orderings, but they are equal in pairs;
hence, the factor of 2. Each of the three orderings,
−∞ < w4 < 0, 0 < w4 < 1, and 1 < w4 < ∞, gives a beta
function, with the result

A¼2βðp1 ·p4þ1;p2 ·p4þ1Þþðp2↔p4Þþðp3↔p4Þ:

The amplitude has poles in the s, t, and u channels. In the s
channel there are poles whenever p1 · p2 ¼ −ðN þ 1Þ, with
positive integer N. This corresponds to the exchange of an
excited string of mass m2 ¼ 2ðN − 1Þ.
The amplitude, Eq. (6), with a general number of

tachyons and photons, in a general kinematic configuration,
is challenging to write in a more explicit form. We will
consider a particular kinematic configuration, involving
three tachyons and J photons; see Fig. 1. The tachyons
have momenta p̃1 ≡ p1 þ Nq, p2, and p3, where q is null
vector. The photons have polarizations λa and momenta
−maq, where ma is an integer and the index a ¼ 1; 2;…J.
In addition, N ¼ P

J
a¼1ma. There are many different tree-

level processes that can occur in this amplitude. We are
interested in the one in which the initial tachyon p̃1

undergoes successive collisions with the photons, even-
tually decaying into two tachyons. Moreover, to make
Eq. (6) tractable, we take the photon polarizations to be
orthogonal to each other: λa · λb ¼ 0 for all a, b. A simple
way of achieving this is to have all the λa be equal to each
other, and equal to transverse circular polarization, ð1; iÞ
in the transverse direction. The amplitude Eq. (6) then
reduces to

A ¼ −1
volðSL2Þ

Z
dwidza w

p̃1·p2

12 wp̃1·p3

13 wp2·p3

23

YJ
a¼1

�X3
i¼1

pi · λa
wi − za

� ðw2 − zaÞ−map2·q

ðw1 − zaÞmap̃1·qðw3 − zaÞmap3·q
: ð9Þ

The amplitude should have a pole when any of the
internal string states are on shell. We look at the Jth order
pole, when all the internal states are on shell. The
intermediate momenta are given by p̃1 −

P
a
i¼1 miq, and

are on shell if the square of the momentum is equal to the

square of the mass of an excited string, 2ðPa
i¼1mi − 1Þ.

The amplitude is of the form

A¼AH→TþT

YJ
a¼1

1

ðp̃1−
P

a
i¼1miqÞ2þ2ðPa

i¼1mi−1Þþ…:

ð10Þ

Simplifying, we may write this as

A ¼ AH→TþT
1Q

J
a¼1

P
a
i¼1 2mi

1

ð1 − p̃1 · qÞJ
þ…: ð11Þ

In Appendix A, we pick out the pole, finding that the
residue is

FIG. 1. We look at an amplitude containing three tachyons and
J photons. We are interested in the piece of the amplitude in
which the photons (blue) with momenta −maq scatter off of the
initial tachyon (red) with momentum p̃1, eventually decaying into
two tachyons (green) with momenta p2 and p3.
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AH→TþT ∼
YJ
a¼1

p3 · λaPma
ðp3 · qÞ; ð12Þ

where the function PmðxÞ is defined as

PmðxÞ ¼
ð1þmxÞð2þmxÞ � � � ðm − 1þmxÞ

ðm − 1Þ! : ð13Þ

Excited strings.—As the notation suggests, the residue of
the amplitude AH→TþT is in fact the amplitude for an
excited string to decay into two tachyons. This was found
in [17]. The excited string is in the state

ðλ1 · A−m1
Þðλ2 · A−m2

Þ � � � ðλJ · A−mJ
Þj0; p̃1i; ð14Þ

where A−k is the DDF creation operator [18,19] which
excites the kth mode of a string, and j0; p̃1i denotes an
unexcited string (a tachyon) with center of mass momen-
tum p̃1. The mass of the excited string is m2 ¼ 2ðN − 1Þ
where N is the level, N ¼ P

i mi, and the mi appeared
above in parameterizing the momenta of the photons.
Let us discuss the reason for this equality. The most

straightforward way to find an amplitude involving an
excited string is through use of the corresponding vertex
operator. The vertex operator for an excited string of
momentum p is some polynomial of derivatives of X,
∂
kXμ, multiplying eip·X. The polynomial will have a total of
N derivatives, for a vertex operator of a string at level N.
The polynomial is fixed by the requirement that the vertex
operator satisfy the Virasoro constraints; however, solving
these constraints is challenging.
In more detail, the location of an open string is denoted

by Xμðσ; tÞ, with the index μ running over the D spacetime
dimensions, and σ parametrizing the coordinate along the
string with endpoints σ ¼ 0, π. For each μ, Xμðσ; tÞ satisfies
the wave equation ð−∂2t þ ∂

2
σÞXμðσ; tÞ ¼ 0, whose solution

in terms of Fourier modes is

Xμðσ; tÞ ¼ xμ þ pμtþ
X
n≠0

1

n
αμne−int cos nσ; ð15Þ

with Fourier coefficients αμn for integer n. The center of
mass position and momentum are denoted by xμ and pμ,
respectively, and the string length has been set to 1.
Upon quantizing, the Fourier coefficients are promoted

to operators, with commutation relations ½αμm; ανn� ¼
mδmþnη

μν. For each mode m > 0 and each direction μ,
there is a harmonic oscillator of frequency m, with creation
operator αμ−m and annihilation operator αμm. For a funda-
mental string in string theory, there is an additional caveat:
the coordinates σ and t were chosen arbitrarily, yet one
should be allowed to perform a change of coordinates,
without affecting any physical answer. This gives the
constraint that the worldsheet energy-momentum tensor

(not to be confused with the spacetime energy-momentum
tensor) vanishes for physical states. This translates into
relations among the αμn operators; these are the Virasoro
constraints.
The most efficient way to find the vertex operator for an

excited string is not to solve the Virasoro constraints, but
rather to construct the operator within the DDF formalism
[18,19]; see also [17,22–24]. Within the DDF construction,
one starts with a tachyon vertex operator, takes the operator
product expansion (OPE) with a photon vertex operator,
picks out the pole, and then repeats the procedure with
successive photon vertex operators.
The DDF construction mirrors the physical process of

starting with a tachyon and successively scattering photons
off of it, and after each scattering event picking out the
intermediate string state that is on shell. It is clear that if
one wants the amplitude involving excited strings, it is
generally more efficient to use the DDF operator rather than
picking out the relevant pole of a many-photon amplitude,
as we did in order to obtain Eq. (11).
It would generally be difficult to study an amplitude with

three tachyons and J photons, with large J, because in
addition to the process we are interested in—of the photons
successively scattering off of the tachyon—the amplitude
has pieces in which the photons interact with each other.
The reason for the simplicity in the amplitude, Eq. (11),
was that we took all the photon polarizations to be
orthogonal to each other, thereby preventing this from
occurring. More technically, had we not taken the photon
polarizations to be orthogonal to each other, the amplitude
with multiple photons, Eq. (6), would have had terms
involving λa · λb=z2ab. The integrals over the different
photon insertion points would no longer decouple. For
the general case, in which the photon polarizations are not
orthogonal, it is better to compute the amplitude using the
DDF operators, which is what we did in [17].
Decay of a generic excited string.—Let us look in more

detail at the amplitude AH→TþT , Eq. (12), for the decay of
an excited string into two tachyons [17]. For simplicity, we
take all the photons forming the excited string to have the
same polarization λ. The state is

Q∞
m¼1ðλ · A−mÞnm j0; p̃1i,

where we can now parametrize the state by the excitation
levels fnmg of mode m. The total level of the string
is N ¼ P∞

m¼1 nmm.
We take concrete kinematics. The initial tachyon has

momentum p̃1 ¼ Nqþ ffiffiffiffiffiffiffi
2N

p ð1; 0; 0; 0Þ. The photons have
momenta proportional to q, where q ¼ −ð1= ffiffiffiffiffiffiffi

2N
p Þð1;

sin β; cos β; 0Þ. The photon polarizations are λ ¼ ð1= ffiffiffi
2

p Þ×
ð0;− cos β; sin β; iÞ. After the photons scatter off of the ini-
tial tachyon, the resulting excited string decays into two
tachyons, with momenta p2¼−ð ffiffiffiffiffiffiffi

2N
p

=2Þð1;sinθ;cosθ;0Þ
and p3 ¼ −ð ffiffiffiffiffiffiffi

2N
p

=2Þð1;− sin θ;− cos θ; 0Þ.
The amplitude AH→TþTðαÞ is a function of the specific

state of the excited string, parametrized by the excitation
levels of the modes fnmg, and of the difference in angle
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α ¼ θ − β between the photons used to create the excited
string and the outgoing photons. The amplitude, Eq. (12),
becomes [17]

AH→TþTðαÞ ∼
Y∞
m¼1

�
sin αPm

�
−cos2

α

2

�	
nm
; ð16Þ

where PmðaÞ was given in Eq. (13). For −1 < a < 0, the
range relevant for us, PmðaÞ oscillates as a function of a.
If only the low lying modes of the string are excited,

nm ≠ 0 for small values of m, the amplitude is simple. As
higher modes are excited, the amplitude develops more
structure. We are interested in the decay of a generic highly
excited string. For a generic state and for N ≫ 1, most of
the modes making up the mass of the excited string have a
frequency of order

ffiffiffiffi
N

p
[17]: a large number for a highly

excited string. We may apply Stirling’s approximation to
PmðaÞ defined in Eq. (13) for mjaj ≫ 1. We are only
interested in the oscillatory part, which behaves as
PmðaÞ ∼ − sinðπmaÞ � � �. The oscillatory part of the ampli-
tude is therefore of the form

AH→TþTðαÞ ∼ ðsin αÞJ
Y∞
m¼1

sin

�
πmcos2

α

2

�
nm
; ð17Þ

where J ¼ P∞
m¼1 nm is the spin of the string. The result,

Eq. (17), is remarkably simple.
Erratic behavior in string scattering.—Is this sector of

string theory chaotic? There is no generally accepted notion
of what chaos in quantum field theory or string theory
means. In [16] we proposed that chaos be diagnosed by
erratic behavior of a many-particle amplitude under a
change in the momentum of one of the particles.
Our amplitude involves J þ 3 particles: an initial

tachyon, J photons sent in at relative angle β (with nm
photons of energym), and two outgoing tachyons at angles
θ and −θ. A change in the momentum of one of the
particles can either be a change in its direction or in its
magnitude. We need to see if the amplitude is erratic under
a small change in θ or β, or a small change in the occupation
numbers nm.
We repeat the argument given in [17]. The amplitude

AH→TþTðαÞ, Eq. (17), is a function of α ¼ θ − β and has a
zero at each angle α for which cos2ðα=2Þ ¼ ðj=mÞ for
integer j less thanm, and for allm that are excited (having a
nonzero occupation number nm). In the limit of infinite N,
and nonzero nm for allm, the amplitude will have a zero for
every angle α at which cos2ðα=2Þ is a rational number. For
finite N, only some of the modes are excited. Consider
some generic excited string state with nm found by
considering a random partition of N for large N. Let m
be some mode for which nm is nonzero and nmþ1 is zero.
Now perform a small change in the state, setting nm to zero
and nmþ1 to 1, while leaving the occupation numbers of all

other modes unchanged. The zeros in the amplitude that
were present at cos2ðα=2Þ ¼ ðj=mÞ are gone, and there are
now zeros at cos2ðα=2Þ ¼ ½j=ðmþ 1Þ�. The amplitude has
undergone a large change.
Consider a small change in the angle α. The change in

the amplitudeAH→TþTðαÞ is controlled by the derivative of
the logarithm of AH→TþTðαÞ. A plot for some particular
generic state is shown in Fig. 2. For a generic state, the
number of zeros in the amplitude scales as N for large N.
The density of zeros per unit angle therefore scales as 1=N.
The distribution of zeros is controlled by the precise choice
of fnmg. For some generic excited string, the distribution
looks erratic.
Discussion.—For a general quantum field theory, it is

likely that seeing chaos in scattering requires having a large
number of closely spaced resonances, and correspondingly
strong coupling. Weakly coupled string theory is an
exception, with a free highly excited string already having
an enormous number of internal states. Indeed, the same
tree-level scattering experiment studied here, when looked
at in the context of, for instance, QED, would have been
uninteresting: photons scattering off of an electron still give
back an electron. The key here is that a photon scattering
off of a string gives an excited string in a superposition of
many different states. The chaos in string scattering may be
related to the chaos in black hole scattering [6,25,26]
through the correspondence principle between black holes
and strings [27–29].
There are hopefully other tractable examples in which

many-particle scattering amplitudes in quantum field
theory exhibit erratic behavior. One would like to be able
to quantify how chaotic the S-matrix is. For semiclassical
processes one can compute a Lyapunov exponent through
the out-of-time-order correlator [6–8], yet to have a gen-
erally valid diagnostic one should presumably only make
use of the S-matrix. For chaotic scattering in quantum
mechanics it has been proposed that the S-matrix has

FIG. 2. A plot of the derivative of the logarithm of the
amplitude, Eq. (17), d logAH→TþTðαÞ=dα, for a generic excited
string state at level N ¼ 100. The partition of N used in the plot is
(18,16,14,13,12,9,5,4,3,3,1,1,1).
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features of a random unitary matrix [30,31]; for application
to quantum field theory, this diagnostic would need to be
refined. There have been extensive studies of matrix
elements of operators in quantum many-body systems,
behavior embodied in the eigenstate thermalization hypo-
thesis [32–37]. One may hope to likewise understand the
behavior of many-particle S-matrices, perhaps in part on
the basis of fundamental properties of quantum field
theories [38–46].

I am grateful to D. Gross for collaboration on closely
related work. I thank N. Arkani-Hamed, S. Mizera, and
A. Tseytlin for helpful discussions. This work was sup-
ported by the ITS.

Appendix A: Extracting the pole.—Here, we show that
the amplitude, Eq. (9), near the Jth order pole, has the
behavior Eq. (10).
Using momentum conservation we eliminate p2,

p2 ¼ −p̃1 þ Nq − p3, so that

p̃1 · p2 ¼ −2þ Np̃1 · q − p̃1 · p3

p3 · p2 ¼ −2 − p̃1 · p3 þ Np3 · q

q · p2 ¼ −p̃1 · q − p3 · q; ðA1Þ

where we used that for tachyons p2 ¼ −m2 ¼ 2. We also
eliminate p̃1 · p3 by using p2

2 ¼ ðp̃1 − Nqþ p3Þ2, which
gives

p̃1 · p3 ¼ Np̃1 · qþ Np3 · q − 1: ðA2Þ

As a result,

p̃1 · p2 ¼ −1 − Np3 · q

p3 · p2 ¼ −1 − Np̃1 · q

q · p2 ¼ −p̃1 · q − p3 · q: ðA3Þ

Inserting into the amplitude, Eq. (9), gives

A ¼ 1

volðSL2Þ
Z

dw1dw2dw3

w12w13w23

Y
a

dza

�
w13ðw2 − zaÞ
w12ðw3 − zaÞ

	
map3·q

×

�
w13ðw2 − zaÞ
w23ðw1 − zaÞ

	
map̃1·q

�
−
X3
i¼1

pi · λa
wi − za

�
: ðA4Þ

Using p1 · λa ¼ 0 (which is the true for kinematics
described in the main body of the text), the last term
simplifies to

−
X3
i¼1

pi · λa
wi − za

¼ −p3 · λa
w23

ðw3 − zaÞðw2 − zaÞ
; ðA5Þ

and the amplitude takes the form

A ¼ −1
volðSL2Þ

Z
dw1dw2dw3

w12w13

Y
a

dzaðp3 · λaÞ
ðw2 − zaÞðw3 − zaÞ

×

�
w13ðw2 − zaÞ
w12ðw3 − zaÞ

	
map3·q

�
w13ðw2 − zaÞ
w23ðw1 − zaÞ

	
map̃1·q

: ðA6Þ

We need to sum over all ordering of the points wi, za. The
only relevant orderings for us are those in which the za can
collide with w1 (these are the ones that will have poles
corresponding to photons scattering off of the initial
tachyon). So we take the ordering w1 < fzag < w2 < w3.
We are indifferent to the orderings of the za among
themselves, and we will sum over all of them. Using SL2

symmetry, we setw1 ¼ 0,w2 ¼ 1,w3 ¼ ∞. Becausewe are
summing over all orderings of the za among themselves, the
integrals over za factorize for different a. We get thatA (up
to an irrelevant sign) is

Y
a

ðp3 · λaÞ
Z

1

0

dzað1− zaÞmaðp3·qþp̃1·qÞ−1z−map̃1·q
a

¼
Y
a

ðp3 · λaÞ
Γ½maðp3 · qþ p̃1 · qÞ�Γð−map̃1 · qþ 1Þ

Γðmap3 · qþ 1Þ :

Expanding near the pole at p̃1 · q ¼ 1, we obtainEq. (12), up
to a prefactor.

Appendix B: The baker’s map.—One of the simplest
chaotic systems is the baker’s map, a two-dimensional
discrete-time map. Phase space is a square, 0 ≤ x, y < 1.
The map stretches phase space by a factor of 2 in the x
direction, contracts it by a factor of 2 in the y direction,
and then the right x half is stacked on top of the left
half, to get a square again. Explicitly, the map is [47]

ðxtþ1; ytþ1Þ ¼

8>><
>>:



2xt;

yt
2

�
0 ≤ xt ≤ 1

2

2xt − 1; ytþ1

2

�
1
2
< xt ≤ 1:

ðB1Þ

The map achieves the hallmarks of classical chaos—
stretching and folding of phase space—in the most
direct possible way. The initial conditions can be written
in binary form,

x0 ¼
X∞
n¼1

c−n
2n

; y0 ¼
X∞
n¼1

cn−1
2n

; ðB2Þ

with coefficients cn, which are either zero or one.
Application of the map t times gives ðxt; ytÞ,

xt ¼
X∞
n¼1

c−n−t
2n

; yt ¼
X∞
n¼1

cn−1−t
2n

: ðB3Þ

If we represent the location ðx; yÞ as
���c−3c−2c−1:c0c1c2���, then after t time steps, the
decimal shifts to the left by t units.
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To see chaos, consider a generic initial state: a randomly
chosen ðx0; y0Þ, picked with uniform measure within the
unit square (equivalently, each cn for each integer n is
picked to be either 0 or 1, with equal measure for both). The
position xt will appear erratic as a function of time t.
Alternatively, consider a change in x0, by for instance
flipping the value of c−n for some particular n; if n is large
and positive, the change in x0 is small. From Eq. (B3) one
sees that the change in xt becomes of order 1 for times t of
order n.
There is a heuristic (partial) analogy between the baker’s

map and the decay of an excited string into two light
strings. The excited string is specified by a set of mode
occupation number fnmg, taking arbitrary values nm ¼
0; 1; 2… for modes m ¼ 1; 2; 3;…. The amplitude is a
function of the angle α and is of the form Eq. (17). As noted
earlier, for a generic excited state of the string fnmg, the
amplitude appears erratic as a function of α and, in addition,
a small change in the state leads to a large change in the
amplitude.
The time t, position xt, and initial conditions fcng in the

baker’s map are analogous to the angle α, amplitude
AH→TþTðαÞ, and mode occupation numbers fnmg, respec-
tively, in the string decay amplitude. Both these maps input
a set of integers and output a dynamical, chaotic quantity:
the position xt, Eq. (B3), for the baker’s map, and the
amplitude AH→TþTðαÞ, Eq. (17), for the string decay.
The analogy only goes so far: while for the baker’s map

there is a straightforward relation between the change in a
coefficient c−n and the amplitude at a particular time, for
the string decay amplitude, which is a product rather than a
sum, exciting some mode m causes a significant change in
the amplitude at multiple angles α.
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