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Accelerating supermassive black holes, connected to cosmic strings, could contribute to structure
formation and get captured by galaxies if their velocities are small. This would mean that the acceleration of
these black holes is small, too. Such a slow acceleration has no significant effect on the shadow of such
supermassive black holes. We also show that, for slowly accelerating black holes, the angular position of
images in the gravitational lensing effects does not change significantly. We propose a method to observe
the acceleration of these black holes through gravitational lensing. The method is based on the observation
that differential time delays associated with the images are substantially different with respect to the case of
nonaccelerating black holes.
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Over the past five years, observations from LIGO/
VIRGO have provided us with qualitatively new informa-
tion about our Universe via gravitational waves. Black
holes have so far been the primary source of gravitational
waves, but it is reasonable to expect that future detectors
will discover new sources, some of which will yield
information about the early Universe. Cosmic strings—
linelike topological defects that can emerge from some
gauge theories during first order phase transitions [1,2] or
at the end of brane inflation [3]—are one such example.
Such objects can break or fray to produce pairs of
accelerating black holes [4,5], which can also be produced
in a background magnetic field [6–8] or in de Sitter
space [9–13]. Alternatively, a network of cosmic strings
could capture primordial black holes produced during their
formation [14]. Such black holes would be accelerating due
to the tension of the cosmic string.
It is therefore of interest to examine how we might detect

accelerating black holes. Although accelerating supermas-
sive black holes connected to cosmic strings could reside
in the centers of galaxies [14,15], their velocities must be
small (≲100 km=s), so that they can contribute to structure
formation [14]. Measurement of their acceleration is there-
fore a formidable challenge, since this quantity must
consequently be very small.
Here, we propose a method for detection of black hole

acceleration via gravitational lensing, one in which rays of
light coming from a source behind the black hole are
deflected near it and turn toward an observer. The observer
does not see the actual location of the source, but rather sees
images of it apparently located elsewhere. Our method
exploits the fact that differential time delays associated with

lensed images of accelerating black holes substantially
differ with respect to their nonaccelerating counterparts.
Spacetime around uniformly accelerated black holes can

be described by

ds2 ¼ 1

ð1þ αr cos θÞ2
�
−QðrÞdt2 þ dr2

QðrÞ þ
r2dθ2

PðθÞ

þ PðθÞr2sin2θdϕ2

�
; ð1Þ

known as the C-metric [16,17], where

QðrÞ ¼ ð1 − α2r2Þ
�
1 −

2m
r

�
;

PðθÞ ¼ 1þ 2αm cos θ: ð2Þ

m is the mass parameter and α is interpreted as the
acceleration. We take the acceleration to be sufficiently
small so that a ray of light passing the black hole to the
Earth lies on the equatorial plane θ ¼ π=2 of the black hole
during its evolution. On this plane, the line element, Eq. (1),
reduces to

ds2 ¼ −Qdt2 þ dr2

Q
þ r2dϕ2; ð3Þ

where QðrÞ is given by Eq. (2). (Within the small
acceleration approximation, we can first find the geodesic
equations and then substitute θ ¼ π=2—the results will be
the same as presented here.) In Fig. 1, we schematically
illustrate the setup. Light coming from the source passes the
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black hole and is deflected by an angle α̂. The observer sees
the image of the object at angular position ϑ.
The equations governing the geodesics can be obtained

using the Lagrangian

L ¼ 1

2
gμν _xμ _xν ¼

1

2

�
−Q_t2 þ _r2

Q
þ r2 _ϕ2

�
; ð4Þ

where the dot denotes differentiation with respect
to some affine parameter along the geodesic. The
constants of motion are E ¼ −ð∂L=∂_tÞ ¼ Q_t, and
Lz ¼ −ð∂L=∂ _ϕÞ ¼ −r2 _ϕ.
For the null geodesics L ¼ 0, and at the point of closest

approach to the black hole, r ¼ b, ðdr=dϕÞ ¼ 0. Using
these facts the deflection angle is [18,19]

α̂ðbÞ ¼ 2

Z
∞

b

dr

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrbÞ2Qb −Q

q − π; ð5Þ

where we safely assume that 1 ≫ αDd,Dds ≫ b, whereDd
and Dds are the respective distances from observer and
source to the black hole. For simplicity we take the
direction of the acceleration to be perpendicular to the
plane of the lens diagram, i.e., Fig. 1. If the acceleration
has a component parallel to this plane, then the third
component of the angular momentum is not a constant of
motion and the geodesic equations cannot be analytically
integrated.
Using the Lagrangian, Eq. (4), and the fact that

ðdr=dtÞ ¼ 0 at r ¼ b, we find

τðbÞ¼
�Z

rs

b
drþ

Z
Dd

b
dr

�
1

Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðbrÞ2 Q

Qb

q −Ds secβ ð6Þ

for the difference between the time it takes for light to travel
the physical path from source to observer with and without

a black hole present, where β is the angular position of the
source, Ds ¼ Dd þDds is the distance from observer to

the source, and rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

ds þD2
s tan2 β

q
.

The Virbhadra-Ellis lens equation [20]

tan β ¼ tanϑ −D½tanϑþ tanðα̂ − ϑÞ�; ð7Þ

where D ¼ Dds=Ds, yields the image angular position,
ϑ, and

J ¼ bffiffiffiffiffiffi
Qb

p ¼ Dd sinϑ; μ ¼
�
sin β
sin ϑ

dβ
dϑ

�
−1

ð8Þ

are respectively the impact parameter and image
magnification [21].
Differentiating Eq. (7) with respect to ϑ, we find

sec2β
dβ
dϑ

¼ sec2ϑ−D
�
sec2ϑþsec2ðα̂−ϑÞ

�
dα̂
dϑ

−1

��
; ð9Þ

where ðdα̂=dϑÞ ¼ ðdα̂=dbÞðdb=dϑÞ. The factor db=dϑ can
be found from Eq. (8), whereas we use [22]

dα̂ðbÞ
db

¼ −2
Z

∞

b

1ffiffiffiffi
F

p ∂

∂r

�
1

r
∂F
∂b

∂r
∂F

�
dr; ð10Þ

where F ¼ ðr=bÞ2Qb −Q, to compute dα̂=db.
We take the lensing black hole to be of the same mass

and distance as M87*. We use numerical methods [20,22]
to investigate its gravitational lensing, assuming this black
hole is accelerating, and compare image positions, mag-
nifications, and (differential) time delays to the case where
it is nonaccelerating. The mass and distance of M87*
have been obtained by the Event Horizon Telescope
Collaboration as MM87� ¼ 9.6 × 1012 m≡ 6.5 × 109 M⊙
and Dd ¼ 5.2 × 1023 m [23]. Whenever we consider an
accelerating black hole, we take the acceleration to be
α ¼ 10−25 m−1, roughly the upper bound obtained by [14]
from the development of a cosmic string network with
black holes of such masses as beads in the network. For
simplicity we assume that the black hole is halfway
between the source and the observer; therefore D ¼ 0.5.
Small changes (of order 1%) inD result in a 0.5% change in
image positions and a 3% change in the time delay.
The closer the light ray passes by the black hole, the

greater the deflection angle. The small value of the
acceleration does not change the value of the deflection
angle significantly. In fact, for a fixed value of the impact
parameter, the deflection angle of a nonaccelerating black
hole is greater than that of its accelerating counterpart by
only about 1 part in 1013. Since the deflection angle is in
units of arcseconds, such deviations cannot be observed in
the near future.

FIG. 1. Deflection of light by the black hole. S, I, O, and L,
respectively, stand for the source, image, observer, and lens
(black hole). The black hole is accelerating in a direction
perpendicular to the plane of the figure and behind it there is
an acceleration horizon at r ¼ 1=α, where α is the acceleration,
whose sign is not important in our approximation. The path of the
light ray remains on the equatorial plane of the black hole within
the small acceleration approximation αDs ≪ 1. β is the actual
angular position of the source (with respect to the line of sight to
the black hole). The black hole bends the light ray by an angle α̂
so that the observer sees the image at angular position ϑ. Dd and
Dds are the distance from lens to observer and from lens to the
source, respectively.
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In Table I, by using Eqs. (5), (7), (8), and (10), we have
computed image positions, deflection angles, impact
parameters, and magnifications of primary and secondary
images for different values of the source angular positions.
The values presented in this table hold for both a non-
accelerating and slowly accelerating M87*. These quan-
tities do not depend on the acceleration significantly.
For a fixed value of the source angular position β, the
impact parameter in the nonaccelerating case is greater than
that of the slowly accelerating case by only about 1 part
in 1013. On the other hand, the (absolute value of) the image
angular position is larger for the accelerating case by only
about 1 part in 1017.
Therefore, it is impossible (at least using current and

near-future observational facilities) to tell whether or not
M87* is slowly accelerating by using the image positions
produced from gravitational lensing. We note that it is also
impossible to tell if M87* is nonaccelerating or slowly
accelerating by using its shadow [24]. Magnitudes of the

magnification of images are greater in the slowly acce-
lerating case by about 1 in 1017 parts as well.
We see from Table I that the angular position of primary

images increases with increasing the angular position of the
source, whereas the absolute value of the angular position
of secondary images correspondingly decreases, as shown
in Fig. 2.
In Table II, we have calculated the time delay, Eq. (6),

of primary images, again assuming the acceleration
α ¼ 10−25 m−1. Quite strikingly, even this small accele-
ration increases the time delay by 6 orders of magnitude,
even though the deflection angles do not differ signifi-
cantly. To understand this feature, recall from Eq. (2) that
the acceleration makes important changes on the metric
function only at large distances. The large distances do not
have a significant contribution in the integral, Eq. (5), due
to the 1=r factor, and so α does not change the deflection
angle significantly.
However, the story is different when it comes to the time

delay. The integrals of Eq. (6) do not have a 1=r factor and
large distances consequently have a significant contri-
bution to τðbÞ. What is of observational importance is
the differential time delay td ¼ τs − τp (and t̄d), which we
provide in Table II (instead of explicit values of time
delays of secondary images). In fact τs and τp cannot be
observed, but if the source is pulsating, every phase in its
period appears in the secondary image td seconds after it
appears in the primary image. With increasing angular
position of the source, the differential time delay td
increases.
Although the acceleration changes the values of τp (and

τs) significantly, the observable quantity td does not deviate
from its nonaccelerating counterpart t̄d that much. In the
last column of Table II, we have presented the difference
Δtd ¼ t̄d − td, which is a positive quantity; for a fixed value
of angular source position, the differential time delay of
secondary and primary images is larger if the black hole is
not accelerating. The difference increases with increasing
angular source position, as shown in Fig. 3.

TABLE I. Image positions, deflection angles, impact parameters, and magnifications of primary and secondary images due to lensing
by M87*. Angular positions θ, bending angles α̂, impact parameters b, and magnifications μ are given for different values of angular
source position β. These results are the same in the nonaccelerating and slowly accelerating cases. (a) p and s refer to primary and
secondary images, respectively. (b) All angles are in arcseconds, and the impact parameters are in meters. (c) We have used
MM87� ¼ 9.6 × 1012 m, Dd ¼ 5.2 × 1023 m, D ¼ 0.5, and α ¼ 10−25 m−1.

β θp α̂p bp μp θs α̂s bs μs

0 1.253 34 2.506 68 3.20 × 1018 × −1.253 34 2.506 68 3.20 × 1018 ×
0.1 1.304 36 2.408 72 3.29 × 1018 6.791 85 −1.204 36 2.608 72 3.04 × 1018 −5.781 73
0.5 1.528 06 2.056 11 3.85 × 1018 1.828 12 −1.028 05 3.056 11 2.59 × 1018 −0.826 954
1 1.849 43 1.698 86 4.66 × 1018 1.266 94 −0.849 483 3.698 97 2.14 × 1018 −0.267 388
2 2.603 42 1.206 83 6.56 × 1018 1.055 75 −0.603 448 5.206 90 1.51 × 1018 −0.056 778 5
3 3.454 71 0.909 423 8.71 × 1018 1.017 05 −0.454 745 6.909 49 1.14 × 1018 −0.017 632 2
4 4.360 33 0.720 660 1.10 × 1019 1.006 76 −0.360 286 8.720 57 9.08 × 1017 −0.006 874 31

FIG. 2. Image position of primary and secondary images.
Angular position of primary images θp (red line) and the abso-
lute value of angular position of secondary images jθsj (dashed
blue line) as a function of source angular position β. Angles
are in arcseconds. We have set MM87� ¼ 9.6 × 1012 m, Dd ¼
5.2 × 1023 m, D ¼ 0.5, and α ¼ 10−25 m−1.
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These results imply that it is indeed feasible to observe if
M87* is accelerating or not, provided sufficiently small
changes Δtd in the value of the differential time delay can
be measured. We note that Shapiro delays can be measured
in binary pulsars with precisions about 10 microseconds
[25]; precision an order of magnitude better will be required
here. Although the distance to the source (and henceD) can
be measured from its redshift [26], one cannot observe the
angular source position β. What one sees are primary and
secondary images of the source and, if the source has
reliable variability, the differential time delay. Small accel-
eration does not change the angular positions of primary
and secondary images by a feasibly observable amount, and
so the angular source position β can be determined via
Fig. 2. If the differential time delay t̄d corresponding to this
β matches the observed value of the differential time delay,
then the black hole is nonaccelerating. Conversely, if this t̄d
does not match the observed value of the differential time
delay, then the black hole is slowly accelerating.
We note that velocity of the black hole is not necessarily

in the same direction as its acceleration. However, we
assume the velocity to be such that the path of light from the

source to the lens lies on or near the equatorial plane of the
black hole. Suppose the light ray passes the black hole on
its equatorial plane and starts its travel toward the observer.
The black hole is accelerating in a direction perpendicular
to the equatorial plane and the geodesic equations indicate
that the θ ¼ π=2 surface is not actually a plane with
vanishing exterior curvature [17]. However in the small
acceleration limit that we consider, the path of the light ray
deviates from the equatorial plane of the black hole by a
small angle δ ∼ ðαD2

s=DsÞ ¼ αDs regardless of the cause
of the acceleration, whether from cosmic strings [4],
magnetic fields [8], a cosmological constant [10], or
different combinations of these [13,27]. In this limit the
path of the light ray deviates from the equatorial plane of
the black hole by a small angle δ ∼ ðαD2

s=DsÞ ¼ αDs. This
small deviation changes the time delays by the small
fraction ∼α2D2

s . Since we have assumed that the source
and the observer are all inside the acceleration horizon of
the black hole and thus αDs ≪ 1, our result for the
differential time delays will be valid up to order α2D2

s.
Note also that not only δ≡ θ − ðπ=2Þ ≪ 1, but _δ ¼ _θ ∼
θ=t ∼ αDs=Ds ∼ α ≪ D−1

s also. In such a limit, one can
show that the equation for the time delay does not change to
leading order in δ.
Taking into account deviations from the equatorial

plane of the black hole by an small angle δ, the deflection
angle becomes

α̂ðbÞ ¼ 2

Z
∞

b

1þ αmδ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrbÞ2Qb −Q

q dr − π ð11Þ

and we see that the time delay, Eq. (6), does not change to
leading order in δ. Sincemα is very small (in our example it
is of order 10−12), the change in α̂ is negligible.
In gravitational lensing in the presence of an accelerating

black hole, small changes accumulate over large distances
from the source to the observer. We conclude that one can
use gravitational lensing as a probe to measure the acce-
leration of a black hole that acts as a lens. We note that in

TABLE II. Time delays of primary and secondary images due to lensing by M87*. Time delays τ are given for different values of
angular source position β. Instead of the time delays of secondary images τs, we present the differential time delay td ¼ τs − τp, which is
of observational importance. (a) As in Table I. (b) β is in arcseconds and the (differential) time delays are in seconds. (c) As in Table I.
(d) Barred quantities refer to values of the case that the black hole is not accelerating and Δtd ¼ t̄d − td.

β τp td τ̄p t̄d Δtd
0 3.131 869 70 × 1012 0 1.627 273 62 × 106 0 0
0.1 3.131 869 69 × 1012 20 445.468 682 992 0 1.617 250 37 × 106 20 445.468 682 993 5 1.52795 × 10−9

0.5 3.131 869 65 × 1012 102 871.116 191 642 1.580 929 45 × 106 10 2871.116 191 651 8.425 56 × 10−9

1 3.131 869 61 × 1012 209 681.897 709 557 1.542 803 88 × 106 209 681.897 709 578 2.171 15 × 10−8

2 3.131 869 55 × 1012 448 736.764 965 694 1.484 433 81 × 106 448 736.764 965 783 8.899 95 × 10−8

3 3.131 869 51 × 1012 737 888.423 902 370 1.441 783 93 × 106 737 888.423 902 647 2.766 03 × 10−7

4 3.131 869 48 × 1012 1 089 214.168 441 97 1.408 806 28 × 106 1 089 214.168 442 669 7.017 52 × 10−7

FIG. 3. Differential time delay. The difference between the
differential time delay in nonaccelerating and slowly accelerating
cases, Δtd ¼ t̄d − td. Time delays are in units of seconds and β is
in units of arcseconds. We have set MM87� ¼ 9.6 × 1012 m,
Dd ¼ 5.2 × 1023 m, D ¼ 0.5, and α ¼ 10−25 m−1.
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the slow acceleration approximation that we are using the
sign of the acceleration is not important.
We also note that besides the primary and secondary

images, there is an infinite set of faint images on each side
of the black hole. These are relativistic images and are
produced by light rays that rotate around the black hole
before continuing their path to the observer [20,28,29]. We
postpone the study of relativistic images to a follow-up
publication.
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