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Motivated by recent ion experiments on tunable long-range interacting quantum systems [Neyenhuis
et al., Sci. Adv. 3, e1700672 (2017)], we test the strong eigenstate thermalization hypothesis for systems
with power-law interactions ∼1=rα. We numerically demonstrate that the strong eigenstate thermalization
hypothesis typically holds, at least for systems with α ≥ 0.6, which include Coulomb, monopole-dipole,
and dipole-dipole interactions. Compared with short-range interacting systems, the eigenstate expectation
value of a generic local observable is shown to deviate significantly from its microcanonical ensemble
average for long-range interacting systems. We find that Srednicki’s ansatz breaks down for α≲ 1.0, at least
for relatively large system sizes.
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Introduction.—Long-range interacting systems show a
number of unique phenomena [1–4], such as negative heat
capacity [5,6], anomalous propagation of correlations
[7–12], and prethermalization [13–17]. Isolated quantum
systems with long-range interactions have been realized in
trapped ion systems [18], Rydberg atom arrays [19], and
quantum gases coupled to optical cavities [20]. The
dynamic [13,14,21,22] and thermodynamic [9,23,24] pro-
perties of these systems have also been investigated. In
particular, trapped ion systems offer an ideal platform for
the study of isolated quantum systems with long-range
interactions ∼1=rα, where the exponent α can be tuned
from 0 to 3 by a spin-dependent optical dipole force
[23,25–31].
Prethermalization of a long-range nonintegrable quan-

tum system without disorder was experimentally observed
[22], but complete thermalization was not observed in an
experimentally accessible time. This appears inconsistent
with the strong eigenstate thermalization hypothesis (ETH)
[32–34], which states that an expectation value Oγγ of a
physical observable Ô for every energy eigenstate jEγi of a
quantum many-body Hamiltonian agrees with its micro-
canonical ensemble average in the thermodynamic limit
[35–44]. We formulate this statement as [45]

Δ∞ ≔
max jOγγ − hÔimc

δEðEγÞj
ηO

!N→∞
0; ð1Þ

where ηO is the spectral range of Ô defined as the difference
between the maximum and minimum eigenvalues of Ô,
and hÔimc

δEðEγÞ is the microcanonical average of Ô in an
energy shell HEγ ;δE centered at Eγ with a sufficiently small

width 2δE. The strong ETH has numerically been verified
to hold for various short-range interacting systems [45–52].
However, little is known about the validity of the strong
ETH in long-range interacting systems except for a few
specific models [38,53,54].
In this Letter, we test the typicality of the strong ETH for

spin systems with power-law interactions ∼1=rα by intro-
ducing an “ensemble” of such systems. Our result is based
on numerical diagonalization, since analytically addressing
the strong ETH is extremely difficult due to a chaotic nature
of energy eigenstates satisfying the ETH [34,55] and the
few-body constraint of realistic operators. We find that the
strong ETH typically holds, at least for α ≥ 0.6 in one
dimension. For α ≤ 0.5, we find no evidence in support
of the strong ETH for system size up to 20 spins relevant
to trapped-ion experiments [9,10,22,23]. We also test
Srednicki’s ansatz [56], which states that (i) the deviation
δOγγ ≔ Oγγ − hÔimc

δEðEγÞ behaves like a random variable
satisfying

E½δOγγ� ¼ 0; S½δOγγ� ¼ e−
SðEγ Þ

2 fðEγÞ; ð2Þ

where E and S denote the mean and the standard deviation,
respectively, S is the thermodynamic entropy, f is a smooth
function, and (ii) the distribution of δOγγ is Gaussian
[49,52,57–61]. We find that both (i) and (ii) typically
break down for α≲ 1.0, at least for relatively large system
sizes. These results imply the presence of an intermediate
regime 0.5≲ α≲ 1.0 in which the strong ETH typically
holds but Srednicki’s ansatz breaks down.
Our results should be distinguished from previous works

concerning typical properties of Gaussian random matrices
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[32,62,63], banded random matrices [64,65], and k-body
embedded random matrices [66–68]. These works do not
consider correlations between off-diagonal elements due
to interactions, and it is unclear how these correlations
affect the typicality of the strong ETH [45,69]. Our work
incorporates such nontrivial correlations by explicitly
constructing an ensemble of operators with long-range
interactions.
Setup.—We consider a one-dimensional spin-1=2 chain

of length N subject to periodic boundary condition. We
denote the local Hilbert space on each site by Hloc with
dL ≔ dimHlocð¼ 2Þ, the space of all Hermitian operators
acting on a Hilbert space H by LðHÞ, and an orthonormal
basis of LðHlocÞ by fσ̂ðpÞg [70]. In numerical calculations,
we set σ̂ð0Þ ≔ Î and σ̂ðpÞ (p ¼ 1, 2, 3) to be the Pauli
operators. For each α, N, and two-body operator ĥ ∈
LðH⊗2

loc Þ with hpq ≔ ½ĥσ̂ðpÞ ⊗ σ̂ðqÞ�=4, we obtain

ĤðαÞ
N ½ĥ� ≔

Xd2L−1
p;q¼1

hpq

�XN
j≠k

σ̂ðpÞj σ̂ðqÞk

ðrjkÞα
�
; ð3Þ

where rjk ≔ minfjj − kj; N − jj − kjg is the minimum
distance between the sites j and k under periodic boundary
condition. The operator, Eq. (3), is invariant under trans-

lation T̂N σ̂
ðpÞ
j T̂†

N ¼ σ̂ðpÞjþ1 and the parity transformation

P̂N σ̂
ðpÞ
j P̂†

N ¼ σ̂ðpÞNþ1−j [71,76], and does not contain spatially
random interactions or random on-site potentials. In
numerical calculations, we focus on the zero-momentum
and even-parity sector.
To discuss the typicality of the strong ETH and

Srednicki’s ansatz, we introduce a set of operators in

Eq. (3) by GðαÞ
N ≔ fĤðαÞ

N ½ĥ�jĥ ∈ LðH⊗2
loc Þg. The set GðαÞ

N is
quite general as it contains arbitrary two-body long-range
operators including Ising, XYZ, Heisenberg models, etc.,
with arbitrary homogeneous on-site potentials and two-
body long-range perturbations. We sample each hpq in
Eq. (3) independently from the standard normal distribu-

tion, thereby introducing a probability measure on GðαÞ
N

[77]. For the ensemble of observables, we consider the

short-range ensemble Gð∞Þ
N with only nearest-neighbor and

on-site terms. We investigate the typicality of the strong
ETH and Srednicki’s ansatz by independently sampling

Hamiltonians from GðαÞ
N and observables from Gð∞Þ

N .
Finite-size scaling of the strong ETH measure.—

Because of Markov’s inequality, the typicality of the

ETH holds if the ensemble average EðαÞ
N ½Δ∞� of the

dimensionless and intensive measure Δ∞ of the strong
ETH defined in Eq. (1) vanishes in the thermodynamic
limit [45]. We numerically investigate the N dependence of

EðαÞ
N ½Δ∞�, where α ranges from 0 to 3. Figure 1(a) shows

that long-range two-body interactions make EðαÞ
N ½Δ∞�

significantly larger than that for short-range interacting
systems and thus disfavor the strong ETH at least for finite-
size systems.
To infer the behavior of EðαÞ

N ½Δ∞� in the thermodynamic

limit, we analyze the N dependence of EðαÞ
N ½Δ∞�. For

Gaussian random matrices, where the few-bodiness of
realistic operators is completely disregarded, the asymp-
totic N dependence of EN ½Δ∞� is obtained as

EðRMTÞ
N ½Δ∞� ≃ CNe−N=Nm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Nm

2

logN
N

−
N0

N

r
; ð4Þ

where C, Nm, and N0 are constants [45]. Thus, the concave

behavior in N is expected for EðαÞ
N ½Δ∞�, and it is therefore

important to check whether numerically obtained EðαÞ
N ½Δ∞�

decreases for larger N [78].

The level of confidence that EðαÞ
N ½Δ∞� decreases with

increasing N can be measured by the probability of

obtaining a sequence of the estimator fÊðαÞ
Nmin

½Δ∞�;…;

ÊðαÞ
Nmax

½Δ∞�g such that ÊðαÞ
Nmin

½Δ∞� > ÊðαÞ
Nminþ2½Δ∞� > … >

ÊðαÞ
Nmax

½Δ∞� in bootstrap iterations (see Supplemental
Material [71] for details). Figure 1(b) shows that

EðαÞ
N ½Δ∞� for α ≥ 0.6 decreases for large N [79].

Therefore, the strong ETH typically holds at least for

α ≥ 0.6. For α ≤ 0.5, EðαÞ
N ½Δ∞� does not decrease within

statistical errors. While this result suggests the breakdown

FIG. 1. (a) Ensemble-averaged strong ETH measure Δ∞ in
Eq. (1) for tunable-range interactions ∼1=rα. To break the
degeneracy in the fully connected case (α ¼ 0), we set
α ¼ 0.0001, which is small enough to capture the essential
physics for α ¼ 0. Thin curves between α ¼ 0.5 and α ¼ 1 show
the data for α ¼ 0.6, 0.7, 0.8, 0.9, and those between α ¼ 1 and
α ¼ 3 are for α ¼ 1.2; 1.4;…; 2.8. Each error bar shows the
80% confidence interval. (b) Probability of obtaining a sequence

fÊðαÞ
N ½Δ∞�gNmax

Nmin
of the estimator for EðαÞ

N ½Δ∞� such that

ÊðαÞ
Nmin

½Δ∞� > ÊðαÞ
Nminþ2½Δ∞� > … > ÊðαÞ

Nmax
½Δ∞� with Nmax ¼ 20,

represented by the color of the cell. This result shows that the

average EðαÞ
N ½Δ∞� decreases for α ≥ 0.6 for large system size,

indicating that the strong ETH typically holds for these cases (see
Supplemental Material [71] for a detailed analysis). The number
of samples lies between 998 and 4994 for each datum. Here, red
(blue) color means that the systems are likely (unlikely) to satisfy
the strong ETH.
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of the strong ETH for α ≤ 0.5, we cannot exclude the

possibility that EðαÞ
N ½Δ∞� vanishes in the thermodynamic

limit and that the strong ETH typically holds for
0 < α ≤ 0.5. Nevertheless, our results for finite-size sys-
tems are relevant to trapped-ion experiments [9,10,22,23],
where systems involve several tens of ions. For the fully
connected case (α ¼ 0), the strong ETH typically breaks
down in arbitrary dimensions because permutation oper-
ators of any two neighboring sites are conserved. This
result is consistent with a monotonically increasing behav-

ior of EðαÞ
N ½Δ∞� for α ≃ 0 in Fig. 1.

Proximity to the fully connected case.—To understand
how the transition from the fully connected case to the
short-range one occurs, we employ finite-size scaling to
examine the level spacing ratio and the fractal dimension.
We first examine the level spacing ratio [80,81] defined by

r̃γ ≔ min
�
rγ;

1

rγ

�
; rγ ≔

Eγþ1 − Eγ

Eγ − Eγ−1
: ð5Þ

The spectral average hr̃i is known to be hr̃i ≃ 0.602 66 for
Gaussian unitary ensemble (GUE) and hr̃i ≃ 0.386 29
for integrable systems whose level spacing distribution is
Poissonian [81].
Figure 2(a) shows the system-size dependence of the

ensemble average EðαÞ
N ½hr̃i� for several values of α. For

every ensemble examined (α ≥ 0.25), it approaches
the GUE value as the system size increases. Therefore,
the approximate permutation symmetry has a lesser effect
for larger systems.

This result is consistent with the one for the transverse-
field Ising chain with long-range interactions [82].

However, for small α, EðαÞ
N ½hr̃i� approximately lies in the

middle of the GUE and Poissonian values for finite system
sizes up to N ¼ 20. This fact indicates that the approximate
permutation symmetry persists for small α in systems with
a few dozens of particles.
We next evaluate the fractal dimension [83] of eigen-

states of a Hamiltonian ĤðαÞ
N ½ĥ� in the eigenbasis of the

corresponding fully connected Hamiltonian Ĥð0Þ
N ½ĥ�. The

fractal dimension is defined by

DqðEðαÞ
β Þ ≔ −

1

log dN

1

q − 1
log

�XdN
γ¼1

jhEð0Þ
γ jEðαÞ

β ij2q
�
; ð6Þ

where jEðαÞ
β i is an eigenstate of ĤðαÞ

N ½ĥ� with eigenenergy

EðαÞ
β , and fjEð0Þ

γ ig is the eigenbasis of Ĥð0Þ
N to which the

eigenbasis fjEðαÞ
γ ig converges in the limit α → 0 [84]. The

fractal dimension satisfies 0 ≤ Dq ≤ 1, where the first

equality holds if and only if jhEð0Þ
γ jEðαÞ

β ij2 ¼ 1 for some
γ, and the second equality holds if and only if
jhEð0Þ

γ jEðαÞ
β ij2 ¼ 1=dN for all γ [85].

Figure 2(b) plots the ensemble average of the minimum

fractal dimensionD2ðEðαÞ
β Þ in the middle 10% of the energy

spectrum against 1= log dN , where dN is the dimension of
the zero-momentum even-parity sector. For α ≥ 3.0,

D2ðEðαÞ
β Þ approaches unity as the dimension of the

Hilbert space increases, indicating that the approximate
permutation symmetry disappears for sufficiently large
system size. The data for α ¼ 1.0 also tends to approach
unity, albeit slowly.
Although the fractal dimension for α ¼ 0.5 slightly

increases for 1= log dN ≥ 0.09 ðN ≤ 20Þ, its slope is not
large enough to determine whether it approaches unity or
converges to a smaller value. For the ensemble with

α ¼ 0.25, D2ðEðαÞ
β Þ does not increase within computation-

ally accessible system size (N ≤ 20), suggesting that it
remains small for larger system size. Thus, eigenstates of
Hamiltonianswith α ≲ 0.5 retain some resemblance to those
of the fully connected Hamiltonian even for large system
size. Since the eigenstates of a fully connected Hamiltonian
typically violate the strong ETH, the eigenstate expectation
values for α ≲ 0.5 are expected to deviate from the micro-
canonical average even for relatively large system sizes due
to the proximity to the fully connected Hamiltonian.
Range of validity of Srednicki’s ansatz.—We test the

validity of the first part [Eq. (2)] of Srednicki’s ansatz
(see Supplemental Material [71] for the second). By
applying Boltzmann’s formula SðEÞ ∼ logdE;δE with

dE;δE ≔ dimHE;δE to Eq. (2), we obtain S½δOγγ� ≃
ð

ffiffiffiffiffiffiffiffiffiffiffi
dEγ ;δE

q
Þ−1fðEγÞ [86]. We test Eq. (2) for our ensembles

FIG. 2. (a) Ensemble average of the mean level spacing ratio hr̃i
defined in Eq. (5), where the average h� � �i is taken over the
middle 10% of the spectrum. It approaches the GUE value for all
α with increasing system size. (b) Ensemble average of the
minimum fractal dimension with q ¼ 2 for energy eigenstates of

ĤðαÞ
N with respect to the eigenbasis of the fully connected

Hamiltonian Ĥð0Þ
N . The minimum is taken over the middle

10% of the spectrum. It approaches unity for α ≥ 1.0 with
increasing dN . Whether the data for α ¼ 0.5 approaches unity
or converges to a smaller value is unclear. For α ¼ 0.25, the
minimum fractal dimension shows no increase. Each gray line
connects the point (0,1) and the data point with the largest dN .
The number of samples lies between 996 and 4994. Most error
bars are smaller than the dot size.
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by investigating the dE;δE dependence of the estimator ŜE
δE

of S½δOγγ�jEγ≃E
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðδOγγÞ2�

q
j
Eγ≃E

defined by

ŜE
δE ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

dE;δE

X
jEγi∈HE;δE

ðδOγγÞ2
vuut : ð7Þ

For each sample ðĥ; ôÞ ∈ LðH⊗2
loc Þ × LðH⊗2

loc Þ, we con-

struct a Hamiltonian ĤðαÞ
N ½ĥ� and an observable Ôð∞Þ

N ½ô� as
in Eq. (3) for various N and fit the numerically obtained
ŜE
δE with a function Cð ffiffiffiffiffiffiffiffiffiffi

dE;δE
p Þ−a by appropriately choos-

ing parameters C and a (note that dE;δE depends on N). The
validity of this fitting is tested by comparing its mean
squared residual with that of the fitting with a function
C0ðlog dE;δEÞ−a0 (a0 is a fitting parameter), which applies to
the integrable case. The probability distributions of a for
different α are shown in Fig. 3.
If Srednicki’s ansatz holds typically, we have a ∼ 1 with

high probability; therefore, the probability distribution of a
should peak around unity. To estimate finite-size effects, we
restrict the available system size for the fitting of ŜE

δE with
Cð ffiffiffiffiffiffiffiffiffiffi

dE;δE
p Þ−a to Nmax and vary Nmax. For α ¼ 3.0, the

probability density tends to peak around a ¼ 1 and
decreases for small a as Nmax increases. We find a similar
tendency for α≳ 1.2 (see Supplemental Material [71]).

Therefore, the first part of Srednicki’s ansatz typically
holds in the thermodynamic limit for α≳ 1.2.
However, the finite-size-scaling behavior for α ≤ 1

shows no tendency for the distribution to peak around
unity, indicating the breakdown of Srednicki’s ansatz at
least for relatively large system sizes. For small α ð≲0.5Þ,
C0ðlog dE;δEÞ−a0 fits the data as well as Cð

ffiffiffiffiffiffiffiffiffiffi
dE;δE

p Þ−a. This
fact indicates that the peaks of the distributions for α ¼ 0.5
and α ≃ 0 in Fig. 3 are artifacts of an improper fitting to
Cð ffiffiffiffiffiffiffiffiffiffi

dE;δE
p Þ−a, which always yields a positive value of a

whenever ŜE
δE decreases with increasing dE;δE.

Srednicki’s ansatz is based on the observation that the
relationship of a quantum many-body Hamiltonian to a
physical observable resembles that between two Gaussian
random matrices [49]. To check this for long-range inter-
actions, we examine the system-size dependence of the

fractal dimension, Eq. (6), of eigenstates of ĤðαÞ
N with α ∈

½0; 3� in the eigenbasis of a local operator Ôð∞Þ
N , i.e., we

replace fjEð0Þ
γ ig in Eq. (6) with the eigenbasis of Ôð∞Þ

N . The
results are shown in Fig. 4. For α ≥ 3, where the typicality
of both the strong ETH and Srednicki’s ansatz has been
established in Ref. [45] and Fig. 3, we find that the fractal
dimension approaches unity as the system size increases.
However, the fractal dimension increases rather slowly for
α ¼ 1.0 and decreases for α ≤ 0.5. This result implies a
strong correlation between eigenstates of a Hamiltonian
and those of a local observable when the interactions are
long-ranged, invalidating the application of the conven-
tional random matrix theory for α≲ 1.0.

FIG. 3. Distribution of the exponent a obtained from the fitting
ŜE
δE ∝ ð ffiffiffiffiffiffiffiffiffiffi

dE;δE
p Þ−a. The inset shows the same data in linear scale.

The existence of a clear peak around a ¼ 1 shows that
Srednicki’s ansatz holds for α ¼ 3.0. No peak around a ¼ 1
can be found for α ≤ 1.0 even for the largest available system
size, indicating the breakdown of Srednicki’s ansatz at least for
relatively large system sizes. The number of samples lies between
1000 and 5000.

FIG. 4. Ensemble average of the minimum fractal dimension,
Eq. (6), of energy eigenstates with respect to the eigenbasis of a
local observable Ô. While it approaches unity for α ≥ 3.0, it
increases rather slowly for α ¼ 1.0 and decreases for α ≤ 0.5 as
we increase log ðdNÞ, indicating a strong correlation between
long-ranged Hamiltonians and local observables. The number of
samples ranges from 932 to 2000 for all data points.
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Conclusion.—We have found that the strong ETH
typically holds for one-dimensional systems with two-body
long-range interactions 1=rα, at least for α≳ 0.6, which
include important cases of Coulomb (α ¼ 1), monopole-
dipole (α ¼ 2), and dipole-dipole (α ¼ 3) interactions. We

have also shown that EðαÞ
N ½Δ∞� for generic two-body long-

range interactions is significantly larger than that for short-
range interactions. Indeed, we cannot decide whether or not
the strong ETH typically holds for α ≤ 0.5 within the
computationally available system sizes (N ≤ 20). These
results are directly relevant for understanding thermal-
ization dynamics of finite-size systems realizable in experi-
ments. We find that Srednicki’s ansatz typically holds for
α≳ 1.2 but typically breaks down for α≲ 1.0 for computa-
tionally tractable system size. Our results reveal a region
(0.5≲ α ≲ 1.0) where the strong ETH typically holds but
Srednicki’s ansatz typically breaks down.
Thus, not only the experimentally investigated long-range

Ising interaction [22] but also generic long-range inter-
actions impede thermalization. We have studied the dynam-
ics of long-range interacting systems from simple initial
states with energy expectation values in the middle 20% of
the spectrum and found that the equilibrium expectation
value of a short-range observable typically deviates more
from the microcanonical average for smaller α [71].
The critical value αc ¼ 1.0 below which Srednicki’s

ansatz typically breaks down for one-dimensional systems
is precisely the value below which the additivity of a
physical quantity is lost. Given the importance of additivity
in thermodynamics, we expect that the strong ETH and
Srednicki’s ansatz typically hold, at least when the range of
interactions is shorter than 1=rd for d-dimensional systems.
It remains a challenge to clarify the relationship between
the additivity and the strong ETH, and how the critical
value of α changes for higher dimensions.

We are very grateful to Synge Todo and Tilman Hartwig
for their help in our numerical calculation.We also thankLiu
Ziyin for helpful discussions in the statistical analysis.
Diagonalizations and multiplications of matrices in the
numerical calculation were performed with GPU acceler-
ation provided by the MAGMA library [96–98]. This work
is was supported by KAKENHI Grants No. JP22H01152
from the Japan Society for the Promotion of Science (JSPS).
S. S. was supported by Forefront Physics and Mathematics
Program to Drive Transformation (FoPM), a World-leading
Innovative Graduate Study (WINGS) Program, the
University of Tokyo.

*Corresponding author.
sugimoto@cat.phys.s.u-tokyo.ac.jp

[1] T. Dauxois, S. Ruffo, E. Arimondo, and M. Wilkens,
Dynamics and Thermodynamics of Systems with Long-Range

Interactions (Springer, Berlin, Heidelberg, 2002), 10.1007/3-
540-45835-2.

[2] A. Campa, T. Dauxois, and S. Ruffo, Statistical mechanics
and dynamics of solvable models with long-range inter-
actions, Phys. Rep. 480, 57 (2009).

[3] A. Campa, T. Dauxois, D. Fanelli, and S. Ruffo, Physics of
Long-Range Interacting Systems (Oxford University Press,
New York, 2014), 10.1093/acprof:oso/9780199581931.001
.0001.

[4] N. Defenu, T. Donner, T. Macrì, G. Pagano, S. Ruffo, and A.
Trombettoni, Long-range interacting quantum systems,
arXiv:2109.01063.

[5] M. Schmidt, R. Kusche, T. Hippler, J. Donges, W.
Kronmüller, B. von Issendorff, and H. Haberland, Negative
Heat Capacity for a Cluster of 147 Sodium Atoms, Phys.
Rev. Lett. 86, 1191 (2001).

[6] F. Gobet, B. Farizon, M. Farizon, M. J. Gaillard, J. P.
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