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We investigate, theoretically and experimentally, the thermodynamic performance of a minimal three-
qubit heat-bath algorithmic cooling refrigerator. We analytically compute the coefficient of performance,
the cooling power, and the polarization of the target qubit for an arbitrary number of cycles, taking realistic
experimental imperfections into account. We determine their fundamental upper bounds in the ideal
reversible limit and show that these values may be experimentally approached using a system of three
qubits in a nitrogen-vacancy center in diamond.
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Cooling has been an important application of thermo-
dynamics since its foundation. Refrigeration generically
occurs when heat is extracted from a system, leading to a
decrease of its entropy and a reduction of its temperature
below that of the environment [1]. Efficient cooling
methods are essential for the study of low-temperature
quantum phenomena, from the physics of atoms and
molecules [2,3] to novel states of matter [4,5] and the
development of quantum technologies [6,7]. In the latter
context, the challenge to initialize qubits in pure states with
high fidelity has led to the introduction of powerful
algorithmic cooling techniques, in which standard quantum
logic gates are employed to transfer heat out of a number
of spins in order to increase their polarization, both in
closed [8] and open [9] systems (see Ref. [10] for a review).
Heat-bath algorithmic cooling is a method that allows

us to cool (slow-relaxing) target spins with the help of (fast-
relaxing) reset spins that pump entropy out of the target
spins into a bath, which acts as an entropy sink [9–20].
An algorithmic cooling cycle consists of a succession of
(i) compression steps that cool the target spins and heat up
the reset spins, and of (ii) refresh steps during which the
reset spins quickly relax back to the bath temperature
(Fig. 1). Cyclic algorithmic cooling operation has recently
been demonstrated experimentally for a minimal system of
three qubits, using nuclear magnetic resonance [21–24] and
nitrogen-vacancy centers in diamond [25].
Motivated by these experiments, we here introduce a

realistic model of a heat-bath algorithmic cooling refrig-
erator composed of one target qubit and of two reset
qubits [21–25] and investigate its thermodynamic perfor-
mance. We determine its fundamental limits and compare
them to those of standard quantum refrigerators [26–30].
Conventional refrigerators cyclically pump heat from a cold
to a hot macroscopic system (both considered as heat baths)
by consuming work [1]. Two central figures of merit of

such refrigerators are the coefficient of performance (COP),
defined as the ratio of heat extracted and work supplied,
and the cooling power that characterizes the rate of heat
removal. The maximum value of the COP is given, in
the reversible limit, by the ideal Carnot expression,
ζC ¼ Tc=ðTh − TcÞ, where Tc and Th are the respective
temperatures of the cold and hot baths [1]. Algorithmic
cooling refrigerators share similarities with conventional
quantum refrigerators: they cyclically transfer heat from the
cold spins to the hot bath by consuming work done by gate
operations. Such analogy makes a comparison between the
two refrigerators possible. However, their underlying cool-
ing mechanisms are intrinsically different and the finite size
of the target qubit results in a cycle that is not closed in the
thermodynamic sense, since its state is not the same at the
beginning and at the end of one cycle.
The performance of thermal machines coupled to finite

baths with finite heat capacities may be conveniently
analyzed with cycle-dependent quantities [32–37]. In the

FIG. 1. Schematic illustration of the minimal three-qubit
algorithmic cooling cycle: in a first (compression) step, heat is
extracted from the target qubit (t), cooling it down while heating
up the two reset qubits (r). In a second (refresh) step, the reset
qubits are rethermalized to the bath temperature Th.

PHYSICAL REVIEW LETTERS 129, 030601 (2022)

0031-9007=22=129(3)=030601(6) 030601-1 © 2022 American Physical Society

https://orcid.org/0000-0002-1446-1276
https://orcid.org/0000-0002-6176-4229
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.129.030601&domain=pdf&date_stamp=2022-07-11
https://doi.org/10.1103/PhysRevLett.129.030601
https://doi.org/10.1103/PhysRevLett.129.030601
https://doi.org/10.1103/PhysRevLett.129.030601
https://doi.org/10.1103/PhysRevLett.129.030601


following, we compute COP, cooling power, and polari-
zation of the target qubit per cycle for an arbitrary number
of cycle iterations. We employ Liouville space techniques
[38] to exactly solve the full nonstationary dynamics of the
system. While heat-bath algorithmic cooling has been
mostly studied in the unitary limit and under steady-state
conditions [9–20], we explicitly account for experimentally
relevant external damping of the target qubit and for
nonideal implementation of logic gates [21–25], for arbi-
trary cycle numbers including the transient regime. We
obtain explicit expressions for the fundamental upper
bounds for COP and cooling power in the ideal reversible
limit and compare the former to the ideal Carnot COP of a
quantum refrigerator [26–29]. Finally, we experimentally
determine the performance of the minimal algorithmic
cooling refrigerator using three qubits in a nitrogen-
vacancy (NV) center in diamond [25] and obtain values
of COP and cooling power that are close to their funda-
mental bounds.
Quantum algorithmic cooling refrigerator.—We consider

a minimal three-qubit heat-bath algorithmic cooling refrig-
erator with Hamiltonian H ¼ P

i ωiσ
z
i , where ωi is the

frequency and σzi the usual Pauli operator of each spin.
Qubit 1 is the target spinwhile qubits 2 and 3 are the two reset
spins. The machine starts in a separable state of the three
qubits, ρð0Þ ¼⊗i ρið0Þ, with respective density matrices
ρið0Þ¼diag½1−ϵið0Þ;1þϵið0Þ�=2 and polarizations ϵið0Þ.
We denote by ρ̃iðnÞ the various states after n iterations of the
compression stage and by ρiðnÞ those after both compression
and refresh steps. We next identify the heat QðnÞ extracted
during round n with the average energy change of the
target qubit, QðnÞ ¼ trfω1σ

z
1½ρ1ðnþ 1Þ − ρ1ðnÞ�g. We fur-

ther associate the work performed by the logic gates on the
system with the corresponding mean energy variation,
WðnÞ ¼ P

i trfωiσ
z
i ½ρ̃iðnþ 1Þ − ρiðnÞ�g [14]. The COP

per cycle, ζðnÞ, is then defined as the ratio of pumped heat
and appliedwork, while the cooling power per cycle, JðnÞ, is
given (in units of the cycle time) as the discrete derivative
(or forward difference) of the heat:

ζðnÞ ¼ −
QðnÞ
WðnÞ and JðnÞ ¼ Qðnþ 1Þ −QðnÞ: ð1Þ

These are the principal quantities of our investigation.
We shall examine the thermodynamic properties of heat-

bath algorithmic cooling in the general case where com-
pression is implemented with imperfect gates and the
(slow-relaxing) target spin is subjected to irreversible
energy dissipation [39]. We will discard irreversible losses
of the reset spins because of their much faster relaxation.
For each round n of the cooling protocol, we accordingly
describe the evolution of the system with the help of three
quantum channels [6]. We first account for energy dis-
sipation of the target qubit via an amplitude damping
channel D with decay rate γ [6],

D½•� ¼
X

j¼1;2

Γj • Γ†
j ; ð2Þ

with the two Kraus damping operators,

Γ1 ¼
�
1 0

0
ffiffiffiffiffiffiffiffiffiffi
1 − γ

p
�

and Γ2 ¼
�
0

ffiffiffi
γ

p
0 0

�
: ð3Þ

We further characterize the imperfect compression stage
with the channel ρ̃ðnÞ ¼ C½ρðn − 1Þ�, such that,

C½•� ¼
X

k¼1;2

Kk • K
†
k; ð4Þ

where we have introduced the two quantum operators,

K1 ¼
I
ffiffiffi
2

p −
1
ffiffiffi
2

p ðj011ih011j þ j100ih100jÞ

− iðsin θj011ih100j þ H:c:Þ; ð5Þ

K2 ¼
I
ffiffiffi
2

p þ
�
cos θ −

1
ffiffiffi
2

p
�
j011ih011j

−
�
cos θ −

1
ffiffiffi
2

p
�
j100ih100j: ð6Þ

Here j0i and j1i are the eigenstates of the spin operators σzi
and I denotes the unit operator. The angle θ quantifies the
imperfection of the compression step. When θ ¼ π=2, we
recover ideal compression which swaps the diagonal
elements of the density matrix, U ¼ expð−iπV=2Þ with
V ¼ j100ih011j þ j011ih100j [9–20]. The compression
operation is commonly implemented experimentally with
Toffoli or CNOT gates with imperfect fidelity, which leads
θ to deviate from the ideal value π=2 [21–25]. Finally, we
describe the refresh step through [9–20]

ρðnÞ ¼ R½ρ̃ðnÞ� ¼ tr23fρ̃ðnÞg ⊗ ρ2ð0Þ ⊗ ρ3ð0Þ: ð7Þ

The composition of the above three channels yields the
combined quantum operation E½•� which corresponds to
one round of the refrigeration algorithm.
Analytical results.—We analytically solve the dynamics

generated by the quantum channel E½•� for an arbitrary
number n of algorithmic cooling cycles, using vectorization
techniques in Liouville space [38]. In this approach, a
density matrix σ is mapped onto a vector vecðσÞ (often
called supervector) in a higher-dimensional Hilbert space,
σ ¼ P

r;s σrsjrihrj ↦ vecðσÞ ¼ P
r;s σrsjrijsi, where the

index r is varied first. The quantum channel, with oper-
ator-sum representation E½σ� ¼ P

μ EμσE
†
μ, may then be

expressed as EðσÞ ¼ unvecðΦEvecðσÞÞ with the superoper-
ator ΦE ¼ P

μ Eμ ⊗ ðE†
μÞ⊺. The advantage of the Liouville

space representation is that n iterations of the cooling cycle
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may be simply evaluated by computing Φn
E , which is not

possible in the original Hilbert space (see Supplemental
Material [40]). Using this formalism, we obtain explicit
expressions for the polarization of the target qubit, as well as
for heat and work, from which we deduce COP and cooling

power (1) for each cycle, for arbitrary initial polarizations of
the three qubits [40].
For simplicity, we here indicate the formulas for COP

and cooling power for the experimentally relevant case of
vanishing initial polarization of the target qubit [21–25]:

ζðnÞ ¼ −½2γð1þ cos2θÞ − 2ϵð2þ γϵÞsin2θ�½ðγ − 1ÞfðθÞ þ 4�e−ngðθ;γÞ
fðγ − 1Þ½fðθÞ þ 4ðϵ2 þ 1Þsin2θ� þ 4gfγfðθÞ þ 2ϵ½cosð2θÞ − 1�ge−ngðθ;γÞ þ 16ð1þ ϵÞ2γsin2θ ⟶

γ¼0
ζmaxðnÞ ¼ 1

JðnÞ ¼ 1

16
½ðγ − 1ÞfðθÞ þ 4�½4ϵsin2θ − γfðθÞ�e−ngðθ;γÞ ⟶γ¼0

θ¼θn
JmaxðnÞ ¼

ϵ

2
ð1þ ϵ2Þe−ngðθn;0Þ; ð8Þ

where we have defined the two functions fðθÞ ¼ 3þ ð1þ
ϵ2Þ cosð2θÞ − ϵ2 and gðθ; γÞ ¼ lnf4=½ð1 − γÞfðθÞ�g, and
introduced the angle θn ¼ π=2 for n < 2, ϵ <

ffiffiffiffiffiffiffiffi
1=3

p
and

θn¼arccosfð2ϵ2þnϵ2þn−6Þ=½ð2þnÞð1þϵ2Þ�g=2 other-
wise. We have here set ϵ1ð0Þ ¼ 0, ϵ2ð0Þ ¼ ϵ3ð0Þ ¼ ϵ
(results for general polarizations are given in Ref. [40]).
Figures 2(a) and 2(b) represent ζðnÞ and JðnÞ as a

function of the cycle number n for various values of the
decay rate γ and of the mixing angle θ. We first note that
both quantities reach their fundamental maximum values in
the undamped limit γ ¼ 0. In this unitary, reversible
regime, the COP ζðnÞ is equal to one, implying that the
extracted heat is precisely given by the work supplied by
the gate operations, −QðnÞ ¼ WðnÞ (when γ ¼ 0). The
value of ζmaxðnÞ is moreover independent of the cycle
number n and of the angle θ. This interesting point reveals
that gate imperfections do not affect the maximum effi-
ciency of the algorithmic cooling refrigerator, but only
reduce the power JmaxðnÞ. We further observe that the
cooling power generically decays exponentially to zero
with increasing cycle iterations, as the asymptotic temper-
ature is reached and no more heat can be extracted from the
target qubit—a behavior also exhibited by ζðnÞ in the

presence of irreversible losses. Figure 2(b) additionally
shows that JðnÞ is mostly affected by the angle θ and not so
much by the decay rate γ in the experimentally relevant
range γ < 0.01. In particular, the optimal angle θn in
JmaxðnÞ depends on n for n ≥ 2 [48].
Two important features of the algorithmic cooling

protocol are the asymptotic polarization of the target qubit
and the number of iterations needed to reach it [9–20].
Using the Liouville space solution, we find the exact
expression [again for ϵ1ð0Þ ¼ 0, ϵ2ð0Þ ¼ ϵ3ð0Þ ¼ ϵ] [40],

ϵ1ðnÞ ¼
γfðθÞ þ 2ϵ½cosð2θÞ − 1�

ðγ − 1ÞfðθÞ þ 4
½e−ngðθ;γÞ − 1�

⟶
γ¼0

θ¼π=2
ϵ1maxðnÞ ¼

2ϵ

1þ ϵ2
½1 − e−ngðπ=2;0Þ�: ð9Þ

The stationary value ϵ1ð∞Þ is thus approached exponen-
tially with a rate constant given by 1=gðθ; γÞ. Figure 2(c)
displays a radically different effect of energy dissipation
and of gate imperfection on the nonideal polarization of
the target qubit. While the decay constant γ affects the
asymptotic value of the polarization ϵ1ð∞Þ, the mixing
angle θ modifies the convergence rate to that value for

(a) (b) (c)

FIG. 2. Thermodynamic performance of the algorithmic cooling refrigerator per cycle. (a) Coefficient of performance ζðnÞ, Eq. (8);
(b) cooling power JðnÞ, Eq. (8); and (c) polarization of the target qubit ϵ1ðnÞ, Eq. (9); for various values of the damping rate γ and of the
mixing angle θ. These two parameters have radically different effects: whereas the decay constant affects the asymptotic value of the
polarization, the mixing angle changes the convergence rate to that value. In addition, the behavior of the cooling power mostly depends
on the mixing angle, while the COP depends on both variables. The fundamental upper bounds in the reversible limit (γ ¼ 0) are shown
by the blue squares. Parameters are ϵ1ð0Þ ¼ 0, ϵ2ð0Þ ¼ ϵ3ð0Þ ¼ ϵ ¼ 0.6.
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γ ¼ 0. As a consequence, imperfect gate operation does not
prevent achieving maximum polarization in the reversible
limit, it only increases the number of required iterations.
This property holds for all convex combinations of the ideal
compression and the identity [40].
Let us next compare the thermodynamic performance of

the algorithmic cooling refrigerator to that of a conventional
quantum refrigerator [26–29], whoseCOP is upper bounded
by the Carnot formula, ζC ¼ Tc=ðTh − TcÞ.We accordingly
evaluate, for each cycle n, the temperature of the target qubit
via TcðnÞ ¼ 1= ln½(1þ ϵ1ðnÞ)=(1 − ϵ1ðnÞ)�, determined
via the ratio of the (Boltzmann distributed) populations of
excited and ground states (a similar formula holds for the
initial hot temperature of the reset spins). The corresponding
Carnot COP per cycle, ζCðnÞ ¼ TcðnÞ=½Th − TcðnÞ� for the
algorithmic cooling refrigerator is shown, together with the
COP ζðnÞ, Eq. (8), in Fig. 3.While ζðnÞ is smaller than ζCðnÞ
at the beginning of the refrigeration cycle, the Carnot bound
is quickly approached after only a few iterations in the ideal
limit ðγ ¼ 0; θ ¼ π=2Þ. The Carnot limit is in general not
attained in the presence of damping (γ ≠ 0).
Experimental results.—Finally, we experimentally vali-

date our new theoretical framework, and analyze the
performance of an algorithmic cooling refrigerator made
of three nuclear spins that are hyperfine coupled to the
central electron spin of a NV center in diamond [25]. NV
center systems offer excellent control of their states and
exhibit very long spin coherence times [49]. The target spin
and the two reset spins are respectively chosen to be the
nitrogen 14N and two carbon 13C nuclear spins that are
coupled to the central electron spin of the NV center with
respective strengths 2.16 MHz, 90 kHz, and 414 kHz
(Fig. 4). The central electron spin has a twofold role: it acts
as (i) the heat bath and also as (ii) an ancillary spin that
drives the interaction among the spins required to achieve

the entropy compression on the target qubit [25]. The
optical spin polarization of the central NV spin is trans-
ferred to the two 13C spins via a SWAP gate during the
refresh steps [40]. Compression is implemented by per-
forming a nonlocal gate among the three nuclear spins that
allow for a unitary mixing of populations in the subspace of
½j011i; j100i� [40]. As the nuclear spins do not interact with
each other, this three qubit Toffoli gate is mediated by the
electron spin.
Typical times of each step are ∼285 μs for the com-

pression step and∼5 ms for the refresh step. The lifetime of
the nuclear spin, T1, is of the order of seconds (corre-
sponding to a decay rate γ ≃ 10−4), allowing us to perform
multiple rounds of the cooling cycle. Since the refresh step
periodically resets the two 13C spins, their damping is not
relevant over the duration of the experiment. Another
source of noise, not considered in previous experiments
[21–24], is due to imperfect compression: the compression
algorithm indeed utilizes three-qubit Toffoli gates [25],

FIG. 3. Comparison with the Carnot coefficient of perfor-
mance. In the reversible regime (γ ¼ 0), the coefficient of
performance ζðnÞ (full symbols) gets close to the corresponding
Carnot limit ζCðnÞ (empty symbols) after a few cycles. The
Carnot bound is generally not reached in the presence of losses
(γ ≠ 0). Same parameters as in Fig. 2.

(a)

(b)

FIG. 4. Experimental performance of the three-qubit algorith-
mic cooling refrigerator. (a) Experimental data for heat QðnÞ
(green triangles) show excellent agreement with theory (orange
diamond) with γ ¼ 10−4 and θ ¼ π=3.4. (b) Cooling power JðnÞ
and COP ζðnÞ also agree very well with theory [ζðnÞ becomes
sensitive to measurement errors for larger n]. Error bars corre-
spond to the standard deviation.
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which when transpiled into the electron-nuclear spin gates,
involve 5 CNOT gates and 14 single-qubit rotations. Gate
imperfections, together with imperfect charge state initial-
ization, lead to mixing between the states j011i and j100i,
which can be quantified by an effective mixing angle θ. The
best fit in our experiment is θ ≃ π=3.4, which corresponds
to an overall error of ∼20% in the compression step. Reset
is additionally implemented via an iterative SWAP gate that
allows for ∼99% fidelity on the achievable hot spin
polarization.
The initial polarizations of the two reset spins are ϵ2ð0Þ ∼

0.58 and ϵ3ð0Þ ∼ 0.41. The imbalance between the polar-
izations comes from the different coupling strengths of the
two spins to the electron spin. We measure the target spin
polarization via single-shot readout with a fidelity of
∼97%, from which we evaluate heat QðnÞ and cooling
power JðnÞ, as well as work WðnÞ and COP ζðnÞ for each
cycle (see Supplemental Material [40]) [50]. We obtain
excellent agreement between theory (with γ ¼ 10−4 and
θ ¼ π=3.4) and data [Figs. 4(a) and 4(b)]. We observe
especially that the upper bounds JmaxðnÞ and ζmaxðnÞ, given
by Eq. (8), are reached in the experiment. For n ≥ 5, heat
and work are very small. As a result, the COP becomes
highly sensitive to measurement errors: it can get negative
for −QðnÞ below zero (as for n ¼ 6) or be larger than one if
WðnÞ is too close to zero (as for n ¼ 7).
Conclusions.—We have performed a theoretical and

experimental study of the thermodynamic performance
of a minimal three-qubit algorithmic cooling refrigerator.
We have analytically computed key figures of merit, such
as coefficient of performance, cooling power, and polari-
zation of the target qubit, for an arbitrary number of cycles.
We have determined their fundamental upper bounds in the
ideal reversible limit and shown that the coefficient of
performance quickly converges to the Carnot value after a
few cycles. We have further highlighted the effects of
realistic experimental imperfections, in particular, irrevers-
ible energy dissipation of the target qubit and imperfect
gate operations, on these quantities. Finally, we have
demonstrated that the fundamental limits may be
approached in an experimental system made of the three
qubits of a NV center in diamond.
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