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We use hyperentanglement to experimentally realize deterministic entanglement swapping based on
quantum elegant joint measurements. These are joint projections of two qubits onto highly symmetric,
isoentangled bases. We report measurement fidelities no smaller than 97.4%. We showcase the applications
of these measurements by using the entanglement swapping procedure to demonstrate quantum
correlations in the form of proof-of-principle violations of both bilocal Bell inequalities and more
stringent correlation criteria corresponding to full network nonlocality. Our results are a foray into
entangled measurements and nonlocality beyond the paradigmatic Bell state measurement and they show
the relevance of more general measurements in entanglement swapping scenarios.

DOI: 10.1103/PhysRevLett.129.030502

Introduction.—Entangled measurements, i.e., projec-
tions of several qubits onto a basis of entangled states,
are an indispensable resource for quantum information
processing. They are crucial for paradigmatic protocols
such as teleportation [1], dense coding [2], entanglement
swapping [3], and quantum repeaters [4,5], as well as for
emerging topics such as network nonlocality [6] and
entanglement-assisted quantum communications [7,8].
However, while entangled states have been broadly

researched [9], the complementary case of entangled
measurements has been largely focused on the paradig-
matic Bell state measurement, i.e., the projection of (say)
two qubits onto the four maximally entangled states jϕ�i ¼
ð1= ffiffiffi

2
p Þðj00i � j11iÞ and jψ�i ¼ ð1= ffiffiffi

2
p Þðj01i � j10iÞ.

This measurement has been experimentally realized in a
variety of contexts within the broader area of entanglement
swapping and quantum correlations (see, e.g., Refs. [10–
20]). Presently, not much is known about the foundational
relevance, practical implementation, and overall usefulness
of more general entangled measurements.
Recently, a class of entangled 2-qubit measurements has

been proposed that is qualitatively different from the Bell
state measurement. It displays elegant and natural sym-
metries and it is gaining an increasingly relevant role as a
quantum information resource. These so-called elegant
joint measurements (EJMs) are composed of a basis of

isoentangled states with the property that if either qubit is
lost, the four possible remaining single-qubit states form a
regular tetrahedron inside the Bloch sphere. Although
originally introduced in the context of collective spin
measurements [21,22], they were reintroduced in order
to remedy the shortcomings of the Bell state measurement
in triangle nonlocality [23] and were later found relevant
for quantum state discrimination [24]. Very recently, they
have been used as the central component of both network
nonlocality protocols, which bear no resemblance to
standard Bell inequality violations [25], and full network
nonlocality protocols, which constitute a stronger, more
genuine notion of network nonlocality [26]. The progress
has also motivated recent experiments that realize one type
of EJM on a superconducting quantum processor [27] and
as a photonic quantum walk [28,29].
Here, we go beyond the Bell state measurement and

experimentally demonstrate entanglement swapping and
quantum correlations based on the EJMs. We use hyper-
entanglement between the polarization and path degrees
of freedom in a pair of photons to create two pairs of
maximally entangled states. Then, we realize a generic
quantum circuit for implementing any EJM and report
high-fidelity entanglement swapping. We leverage this for
tests of quantum correlations in entanglement swapping
scenarios, originally developed in [25,26], that for the first
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time are not based on the Bell state measurement. These
tests, which may be viewed as proof-of-principle tests of
quantum networks, are centered about the initial independ-
ence of the two entangled pairs.
Theoretical background.—An EJM, labeled by a para-

meter θ ∈ ½0; ðπ=2Þ�, is a projection onto the following
basis of a 2-qubit Hilbert space [25]:

jψθþþþi ¼
1

2
ðe−iπ

4 j00i − rθþj01i − rθ−j10i þ e−
3iπ
4 j11iÞ;

jψθþ−−i ¼
1

2
ðeiπ

4 j00i þ rθ−j01i þ rθþj10i þ e
3iπ
4 j11iÞ;

jψθ
−þ−i ¼

1

2
ðe−3iπ

4 j00i þ rθ−j01i þ rθþj10i þ e−
iπ
4 j11iÞ;

jψθ
−−þi ¼

1

2
ðe3iπ

4 j00i − rθþj01i − rθ−j10i þ e
iπ
4 j11iÞ; ð1Þ

where rθ� ¼ ½ð1� eiθÞ= ffiffiffi
2

p �. We denote the four possible
outcomes of the measurement (indicated as the states’
subscripts) by a string of three bits b ¼ ðb1; b2; b3Þ ∈
fþ1;−1g3 such that b1b2b3 ¼ 1. The elegant property
of these measurements is that all basis states are equally
entangled and that the two sets of four reduced states, when
the right or left qubit is lost, respectively, form two mirror-
image regular tetrahedra of radius ð ffiffiffi

3
p

=2Þ cos θ inside the
Bloch sphere, whose vertices are parallel and antiparallel
with the Bloch sphere direction ðb1; b2; b3Þ, respectively.
Notably, for θ ¼ ðπ=2Þ, the EJM is equivalent to the Bell
state measurement up to local unitaries.
We apply the EJM for entanglement swapping. Consider

that qubits B1 and B2 in the two, initially independent,
maximally entangled states jϕþiAB1

⊗ jϕþiB2C are sub-
jected to the EJM. This produces the output b with
probability pðbÞ ¼ 1

4
and stochastically renders qubits A

and C in one of the four isoentangled states (up to complex
conjugation). Consider now that the qubits A and C can
each be independently measured with the three Pauli
observables (sometimes up to a sign), specifically −σX,
σY , and −σZ. For qubit A (C) we associate these with inputs
labeled x ∈ f1; 2; 3g (z ∈ f1; 2; 3g) and label the outputs
a ∈ f�1g (c ∈ f�1g). Examining the correlators between
the three measurement events, one finds that hAxByCzi ¼
−f½1þ ð−1Þσ sin θ�=2g, where σ ¼ 0 (σ ¼ 1) if ðx; y; zÞ is
an even (odd) permutation of (1,2,3), and hAxByCzi ¼ 0
otherwise. Moreover, the two-body correlators are
hAxByi ¼ −ðcos θ=2Þδx;y, hByCzi ¼ ðcos θ=2Þδy;z, and
hAxCzi¼0, and the one-body correlators all vanish.
Here, the correlators are defined as hAxByCzi ¼P

a;b;c ab
ycpða; b; cjx; zÞ and analogously for the two- and

one-body cases.
We can think of these correlations as arising in the

simplest quantum network. In general, a quantum network
consists of a number of parties that are connected to each
other, in some configuration, via multiple independent

sources that distribute entangled states. They are natural
generalizations of the standard Bell scenario, which
features only a single source connecting all parties.
Correlations observed in such scenarios are called network
nonlocal if they cannot be modeled by associating an
independent local variable to each source. This independ-
ence is the crucial feature that takes network nonlocality
conceptually beyond standard Bell nonlocality (see,
e.g., Refs. [30–35]). In our scenario, called the bilocal
scenario, a network local model reads pða; b; cjx; zÞ ¼
R
dλdμ qð1Þλ qð2Þμ pðajx; λÞpðbjλ; μÞpðcjz; μÞ for some local

variable densities qð1Þλ and qð2Þμ .
Reference [25] showed that the above quantum corre-

lations are nonbilocal; i.e., we cannot assign local variables
to systems AB1 and B2C, respectively. This is witnessed
through the violation of the bilocal Bell inequality

B≡ S
3
− T ≤ 3þ fðZÞ; ð2Þ

whereS¼P
3
k¼1ðhBkCki−hAkBkiÞ,T¼P

x≠y≠z≠xhAxByCzi,
andZ ¼ maxðCÞ, where C ¼ fjhA1ij;…; jhA3B3C3ijg is the
list of the absolutevalue of all correlators that donot appear in
the definitions of S or T. The term fðZÞ is a correction term
relevant to the experimental reality that measured correlators
in C will not equal zero. In the Supplemental Material [36],
we numerically show that fðZÞ ¼ Z þ 4Z2 is a valid
correction term as long as Z ≲ 0.55. The quantum protocol
achieves B ¼ 3þ cos θ, which for an ideal implementation
(Z ¼ 0) gives a violation for every EJM except the Bell state
measurement (θ ¼ ðπ=2Þ). The latter is merely a feature of
our quantum protocol. In contrast to many other criteria for
network nonlocality, which are tailored for employing the
Bell state measurement (see, e.g., Refs. [30,31,37–40]), our
quantumprotocol and bilocalBell inequality are not based on
using standard Bell nonlocality as a building block for
network nonlocality.
The quantum correlations also reveal stronger forms of

network nonlocality. Reference [26] introduced the concept
of full network nonlocality. Again assuming only the initial
independence of systems AB1 and B2C, the correlations are
said to be full network nonlocal if they cannot be modeled
by any theory in which one source corresponds to a local
variable and the other to a generalized, perhaps even
postquantum, nonlocal resource. Notably, many known
network Bell inequalities, tailored for the Bell state
measurement, fail to reveal full network nonlocality [6].
However, the EJMs enable a successful detection. Full

network nonlocality is implied by the simultaneous viola-
tion of both the following inequalities [26]:

F 1 ¼ −hA1B2C3i − hA2B2i
þ hC3i½hA1B2i þ hA2B2C3i þ hC3i� ≤ 1; ð3Þ

PHYSICAL REVIEW LETTERS 129, 030502 (2022)

030502-2



F 2 ¼ −hA1B2C3i þ hB2C2i
þ hA1i½hB2C3i − hA1B2C2i þ hA1i� ≤ 1: ð4Þ

The given quantum protocol achieves F 1 ¼ F 2 ¼
1
2
ð1þ sin θ þ cos θÞ, which is a violation for every

θ ∈ ½0; ðπ=2Þ�. The largest violations are obtained for an
intermediate member of the EJM family, namely,
θ ¼ ðπ=4Þ. Notice that these violations are achieved using
effectively only a binarized version of the EJM, as only
Bob’s outcome B2 appears in the inequalities above.
Interestingly, and in contrast to the Bell state measurement,
it remains entangled even after binarization.
Experimental setup.—Our approach to experimentally

realize the EJM and the associated tests of quantum
correlations is represented in Fig. 1. A central fact is that,
in linear optics, EJMs cannot be realized without auxiliary
particles when each qubit is encoded onto a different
photon [41–43]. Our approach is therefore to circumvent
this issue by using two different degrees of freedom, path
and polarization, of the same photon.
We generate pairs of hyperentangled states jϕi¼

jϕþ
p i12⊗ jϕþ

s i34. Here, jϕþ
p i12¼ð1= ffiffiffi

2
p ÞðjHijHiþjVijViÞ

is a polarization Bell state of qubits 1 and 2, and jϕþ
s i34 ¼

ð1= ffiffiffi
2

p Þðjs0ijs0i þ js1ijs1iÞ is a spatial mode Bell state of
qubits 3 and 4. Using the first beam displacer (BD), we split
the pump laser (775 nm) to two spatial modes (s0 and s1)
and generate a polarization-entangled photon pair in each
mode via a type-II cut periodically poled potassium titanyl
phosphate (PPKTP) crystal [see Fig. 2(a)]. The hyper-
entanglement jϕi ¼ jϕþ

p i12 ⊗ jϕþ
s i34 is obtained by tuning

the relative phase between the two spatial modes [44,45].
The small separation (4 mm) of BD ensures the phase

stability [46]. We used 90 mW pumped light to excite
about 2000 photon pairs per second. The coincidences to
singles ratio of the entanglement source is 19%. Qubits 1
and 2 (3 and 4) are encoded in the polarization and path
degrees of freedom of particle 1 (2). Attributing qubit 1
(4) to Alice (Charlie) and qubits 2 and 3 to Bob, we can
rewrite the prepared state as jϕi ¼ jϕþiAB1

⊗ jϕþiB2C.
A deterministic EJM is implemented on qubits 2

(polarization) and 3 (spatial mode) following the quantum
circuit proposed in Ref. [25], see Fig. 2(d). It requires
controlled NOT (CNOT), C-phase, phase, and Hadamard
operations [Fig. 2(e)]. By choosing qubit 3 as the control
and qubit 2 as the target, the controlled gates can be realized
with polarization manipulation in the different paths (see
the Supplemental Material [36] for details). The CNOT
gate is combined with the conversion part and is realized by
using HWPs on the two paths s0 and s1. A similar C-phase
gate is realized by a liquid crystal phase plate. Loading
different voltages on the liquid crystal produces different
phases between horizontally (H) polarized light and ver-
tically (V) polarized light. Only for path s1 we change the
phase between H and V, in order to realize the C-phase
gate. We use the liquid phase crystal to load π=2 phase on
H and V to complete the π=2 phase gate on the polarization
qubit. We realize the phase gate and Hadamard gate by
converting the path qubit into a polarization qubit. By
cascading these gate operations, we realize the EJM on
polarization and path qubits of a single photon. Finally, we
check for correlations between the initially independent
polarization and path qubits, 1 and 4, by measuring
fσX; σY; σZg on both sides [see Figs. 2(b) and 2(c)].
Experimental results.—We have implemented eight dif-

ferent choices of the EJM parameter θ ∈ f0; ðπ=12Þ;
ðπ=6Þ; ðπ=4Þ; ðπ=3Þ; ð5π=12Þ; ðπ=2Þg. We reconstruct our
quantum measurement from the obtained data via measure-
ment tomography following the maximum-likelihood
method [47]. In particular, we record a measurement fide-
lity of 98.5%� 0.1% for θ ¼ 0 and 97.5%� 0.2% for
θ ¼ ðπ=4Þ. Details are provided in the Supplemental
Material [36]. Moreover, we have measured the fidelity of
our entanglement swapping procedure through the fidelity
between the EJM eigenstates and the postmeasurement state
of systemAC. For the twomost relevant cases, namely, θ ¼ 0
and θ ¼ ðπ=4Þ, the average fidelity of the swapped state is
98.5%� 0.2% and 97.5%� 0.2%, respectively.
For each of the chosen values of θ, we have tested the

bilocal Bell inequality (2) and the criterion (3) and (4) for
full network nonlocality. For each setting ðx; zÞwe measure
for 10 s, recording approximately 20 000 coincidences. We
observe correlations strong enough to demonstrate both
nonbilocality and full network nonlocality. For the former,
we obtain the largest violation by implementing the EJM at
θ ¼ 0, measuring B ¼ 3.922� 0.018, while the right-hand
side of inequality (2) (its bilocal bound) is 3.092� 0.012.
For the latter, we obtain at best F 1 ¼ 1.112� 0.006 and

Bob

Alice
Polarization Qubit

Spatial Qubit

Alice
Bob

Charlie

x {1,2,3}

a {+1,-1}

z {1,2,3}

c {+1,-1}1 2 3 3
b b ,b ,b ) {+1,-1}

Qubit 2

Qubit 4

Qubit 1

Qubit 3 Charlie

Particle 1 Particle 2

Qubit 1 Qubit 2 Qubit 3 Qubit 4

FIG. 1. Schematic diagram. Particles 1 and 2 are in a hyper-
entangled state jϕi ¼ jϕþ

p i12 ⊗ jϕþ
s i34 of polarization qubits (p)

and spatial qubits (s). The EJM is performed on qubits 2 and 3,
while Pauli observables are independently performed on qubits 1
and 4, respectively.
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F 2 ¼ 1.208� 0.006 by choosing θ ¼ ðπ=4Þ. We note that
our data for θ ¼ 0 also provide a violation of the second
bilocal Bell inequality originally proposed in Ref. [25],

specifically achieving B0 ¼ 29.333� 0.019, which exceeds
the bilocal bound of 28.531 (see the Supplemental Material
[36] for details).

FIG. 3. Experimental results. Left: results for our test of the bilocal Bell inequality (2). The yellow curve is the theoretical prediction
for the quantum correlations under consideration. The blue points are the experimental data and the blue line is a fitted curve. The orange
diamonds are the bilocal bounds after consideration of the Z-correction term. Right: results for our test of full network nonlocality
(FNN), via inequalities (3) and (4). The yellow curve is the theoretical prediction. The blue and red points are the experimentally
measured values corresponding to F 1 and F 2, respectively. The errors were estimated assuming Poissonian statistics.

(c) Measurement of the spatial qubit
(Charlie) 

(b) Measurement of 
the polarization qubit

(Alice) 

CNOT and conversion of 
polarization and spatial qubits 

Hadamard

Conversion of polarization
and spatial qubits 

R

R

Hadamard

Conversion of polarization
and spatial qubits 

Hadamard

(d) Elegant Joint Measurement setup (Bob)

QWP HWP DM

LCPBS BD

SPDComp

(a) Hyperentanglement source 

Spatial qubit 

Polarization qubit 

HWP@22.5

HWP@22.5

HWP@22.5

HWP@0

HWP@45

HWP@0

HWP@0

HWP@45

HWP@45

775nm
Laser

(e) Circuit diagram for the Elegant Joint Measurement 

PBS

H

R 2- R 2 H

R 2 H

HWP@775nm
&1550nm

PPK
TP

s0s1

DM

R 2

s1

s0

s1s0

FIG. 2. Experimental setup. (a) Preparation of the hyperentangled states 1
2
ðjHijHi þ jVijViÞ ⊗ ðjs0ijs0i þ js1ijs1iÞ. (b) Alice’s

measurement of the polarization qubit: settings fσX; σY; σZg are implemented via quarter and half wave plates (QWPs, HWPs).
(c) Charlie’s measurement of the spatial qubit (first converting it into polarization). (d) Bob’s EJM setup. We use different optical
elements on the two paths (combined appropriately with the subsequent polarization-to-spatial conversion setup; see details in the
Supplemental Material [36]) to realize the CNOT gate. The Hadamard operation on the spatial qubit is realized by a HWP set at 22.5°,
between two polarization-to-spatial conversion setups. Then two liquid crystals (LCs) in the different paths and a HWP at 22.5° are used
to realize the C phase, ðπ=2Þ phase, and Hadamard gates on the polarization qubit, where the voltage of LC1 (LC2) is set so that it
realizes Rðπ=2Þ (Rπ−θ ¼ Rðπ=2Þ−θRðπ=2Þ, respectively) with Rϕ ¼ ð1

0
0
eiϕÞ. Finally, we convert the spatial qubit to a polarization qubit again

and use LC3 and HWP to realize the ðπ=2Þ phase and Hadamard gates on the spatial (turned into polarization) qubit. (e) Circuit diagram
for the EJM [25]. DM, dichroic mirror; PBS, polarization beam splitter; Comp, compensator; SPD, single photon detector.
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Our complete correlation results are illustrated in Fig. 3.
For the bilocality test, we measured Z ¼ 0.071� 0.008 for
the most interesting case of θ ¼ 0 and at most Z ¼ 0.099�
0.008 over all θ. Taking into account the Z-dependent
correction to the bilocal bound in (2), we record a violation
for the first five values of θ. In addition, we observe full
network nonlocality for four different choices of θ. Although
the theory predictsF 1 ¼ F 2, we consistently find thatF 2 is
significantly larger than F 1. This is attributed to the phase
error in the EJM setup. As discussed in the Supplemental
Material [36], a small amount of such error induces a
considerable offset in the values of F 1 and F 2.
These correlation tests are based on the assumption of

independent entangled pairs. To reasonably meet this
assumption, we have carefully calibrated our setup in order
to eliminate potential correlations between the initial
system AB1 and B2C. To estimate the accuracy of the state
preparation, we have, via state tomography [48], recon-
structed the total state and found that it has a fidelity of
99.0%� 0.1% with the target state jϕþiAB1

⊗ jϕþiB2C. To
estimate the correlations between the two joint systems, we
have evaluated both the fidelity and the quantum mutual
information [49] between the tomographic reconstruction
and the product of its reductions to systemsAB1 andB2C.We
obtain 99.1%� 0.1% and 0.048� 0.003 bits, respectively.
Discussion.—Our Letter constitutes a first step toward

the experimental realization of entanglement swapping
protocols beyond the celebrated Bell state measurement,
and our experiments showcase their advantages. On the
conceptual side, it is interesting to further understand the
role of more general entangled measurements in quantum
information processing. Already conceptualizing the exten-
sion of the EJM to multipartite settings appears to not be
straightforward. On the technological side, a natural next
step is to investigate entanglement swapping tests based on
EJMs where all qubits are assigned separate optical
carriers, i.e., with the help of auxiliary particles or nonlinear
optical processes. This would enable the use of determin-
istic and complete EJMs in proper quantum networks.
Also, provided appropriate theoretical advances take place
(see, e.g., Ref. [50]), it may be interesting to extend
our hyperentanglement-based approach toward proof-of-
principle demonstrations of triangle-nonlocal correlations
via EJMs [23].
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