
Comment on “Universal and Accessible Entropy
Estimation Using a Compression Algorithm”

In a recent Letter [1] a framework for estimating entropy
was introduced and applied to one-dimensional and two-
dimensional systems. In this Comment we show that the
method is not well suited for estimating entropy in
bidimensional systems presenting long-range correlations.
In Ref. [1], entropy is evaluated following this scheme:

(1) discretize the considered configurations, (2) store them
in a 1D file, (3) measure the compressed file size with a
lossless compression algorithm, and (4) estimate the
incompressibility and map it to the asymptotic entropy
SA. Here we test this scheme for binary variables, and we do
not consider the complication produced by the coarse
graining of continuous variables.
In general, lossless compression algorithms are known to

present slow entropy convergence, and alternative more
efficient methods are used [2]. There is a rich literature
studying 1D systems but the analyses of multidimensional
patterns are very few, and they are expected to present new
features compared to the 1D case. Some methods are
known to apply to patterns of arbitrary dimension (e.g.,
block entropies). In contrast, mapping multidimensional
patterns to a one-dimensional sequence can be path
dependent, loses bidimensional correlations, and can even
produce spurious long-range correlations [3]. The use of a
locality-preserving curve, like Hilbert’s one, does not
guarantee to solve these difficulties.
Systems which present long-range correlations can be

used to test these effects. In the original Letter, long-range
correlations are matched only in the 2D NN Ising model
near the critical point. In that region, the estimated SA dis-
plays a relative error between 5% and 10%. Unfortunately,
this Ising model is a particular exception where the redu-
ction to a 1D string is known to not affect the statistics that
determine entropy estimation [4]. For this reason, this
system is not a good benchmark for testing entropy
estimation in 2D patterns with long-range correlations.
For testing the Avinery’s framework in this situation, here
we consider a set of 68 different patterns obtained from built
form maps of cities around the world [5]. These binary
matrices of size 1000 × 1000 are particularly well suited for
the test. The subextensive part of their block entropies
diverges [5,6], implying the presence of very long-range
correlations that make the entropy estimation particularly
difficult. For these symbolic sequences we cannot obtain the
exact entropy values with analytical methods. Instead, we
can use a reliable block-entropymethod [7] which estimates
the entropy by using differential entropies (SB). The results
are robust, as alternative block-entropy methods give
equivalent outcomes [5].
Figure 1 compares the results obtained by the classical

block-entropy method (SB) with the ones generated by the
compression algorithm (SA). This second approach dra-
matically overestimates the entropy. The median of the

percentage error is 91%, and the scattering plot shows that
the difference between SA and SB grows for larger SB
values. The reduction of 2D patterns to a 1D string
significantly destroys the involved bidimensional struc-
tures, which are particularly significant in systems with
long-range correlations, and generates a substantial over-
estimation of the entropy.
Even if Avinery’s method is indeed elegant and computa-

tionally effective, it cannot be considered accurate for
general 2D systems.
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FIG. 1. Scatter plot of the SA and SB values. SA are estimated by
using the method in Ref. [1] with the Hilbert’s curve. SB are
obtained following the scheme of Eq. 3 in Ref. [5], for blocks of
size up to 15. The continuous line represents the linear fitting:
y ¼ 1.25xþ 0.15. Inset: the distribution of ðSA − SBÞ=SB.
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