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We demonstrate that the physics of the F model can be approached very closely in a two-dimensional
artificial magnetic system. Faraday lines spanning across the lattice and carrying a net polarization, together
with chiral Faraday loops characterized by a zero magnetic susceptibility, are imaged in real space using
magnetic force microscopy. Our measurements reveal the proliferation of Faraday lines and Faraday loops
as the system is brought from low- to high-energy magnetic configurations. They also reveal a link between
the Faraday loop density and icelike spin-spin correlations in the magnetic structure factor. Key for this
Letter, the density of topological defects remains small, on the order of 1% or less, and negligible compared
to the density of Faraday loops. This is made possible by replacing the spin degree of freedom used in
conventional lattices of interacting nanomagnets by a micromagnetic knob, which can be finely tuned to
adjust the vertex energy directly, rather than modifying the two-body interactions.
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Introduction.—In the beginning of the 20th century, the
formulation of the third law of thermodynamics was
vigorously debated, notably between Nernst, Planck, and
Einstein [1–3]. In the 1920s, it becomes clear that the
following, often taught statement was not precise enough:
When temperature falls to absolute zero, the entropy of a
pure crystalline substance tends to a constant, which can be
taken to be zero. The heat capacity measurements per-
formed by Giauque et al. [4,5] on water ice were certainly a
milestone in that context as they unambiguously demon-
strated the existence of an extensive entropy at low
temperature. These experimental findings nicely agreed
with the description of the proton disorder in ice proposed
by Bernal and Fowler [6] and Pauling [7], highlighting
solid water as a fascinating candidate for challenging the
formulation of the third law.
These works later inspired the introduction in statistical

mechanics of the so-called vertex models (see Refs. [8,9]
and the Supplemental Material [10]). Although being an
abstract, conceptually simple, two-dimensional view of
reality, these theoretical approaches proved to be very
powerful. Among them, the ice model, one of the variants
of the six vertex model, may “be considered to be one of the
more successful applications of statistical mechanics to the
real world” [22]. The F model, another variant of the six
vertex model, was introduced by Rys in the 1960s to
describe antiferroelectrics [23] and is one of the few exactly
solvable models of statistical mechanics [24–28].

The F model has rather unusual properties: (i) it is
characterized by an infinite order phase transition separat-
ing a high-temperature critical phase (the so-called square
ice) from an antiferromagnetic order, and (ii) the configu-
rational space is divided into topological sectors. These
properties are inherited from the constraints of the six
vertex model, which allows only loop excitations to
develop on an antiferromagnetic background consisting
of a tessellation of type I vertices (see Fig. 1). These loops
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FIG. 1. Schematics showing an excited configuration of the F
model. Type I domains are colored in green and blue, whereas
type II vertices appear in red. Only type II vertices carry a
magnetic moment that are joined by the Faraday lines (red and
blue oriented thick lines). Faraday lines have an assigned parity
depending on the A or B plaquettes they bridge (the red Faraday
line has A parity and separates neighboring B plaquettes).
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are made of type II vertices, whose magnetic moments can
be joined into lines (see Fig. 1), the so-called Faraday lines
[29]. Faraday lines have a defined A or B parity depending
on the plaquettes they bridge (a loop only crosses either A
or B plaquettes, see Fig. 1). They carry the system energy
[29] and are thus the elementary excitations of the F model.
They are of two kinds: magnetization-free, chiral closed
loops extending within the bulk of the lattice, and system-
spanning windings, hosting a net magnetization. Only
closed loops can be contracted to zero, but they do not
couple with an external field, as they carry no net
magnetization. Instead, system-spanning windings cannot
be contracted, forcing the system to fluctuate within a given
topological sector [29,30].
These theoretically predicted, exotic properties are not

easily observed in nature. We might wonder whether they
could be conveniently studied experimentally, for example,
in artificial magnetic systems [31–34], or if this is a lost
battle. So far, two-dimensional square assemblies of
interacting nanomagnets have failed to probe the topologi-
cal properties of the F model, despite the fact that they
share the same ground state. As pointed out by Nisoli [29],
the transitions in artificial magnetic systems “are
innocuously second order [35–38], and their [magnetic]
susceptibility is never zero.” This is so because the
thermodynamics of artificial square ice magnets is
described by the 16 vertex model, which permits excita-
tions of vertices violating the ice-rule constraint necessarily
satisfied in the six vertex model. These ice-rule defects then
act as sources or sinks of magnetic flux, breaking the
topological properties of the F model [29].
Here we show that the thermodynamics of the F model

can be approached very closely in a purely two-dimensional
system, including its macroscopically degenerate, high-
temperature ice regime. More importantly, the topological
properties of the F model can be probed by a careful control
of the vertex energies and the reduction of ice-rule defects
to a marginal contribution. This allows us to visualize the
proliferation of Faraday loop excitations developing on the
antiferromagnetic ground state as our system is brought to
higher-energy configurations. Faraday lines carrying a net
magnetization and chiral Faraday loops characterized by
a zero magnetic susceptibility are imaged in real space,
giving access to the topological properties of the F model
experimentally.
Micromagnetism as an additional degree of freedom.—

The system we consider is a square lattice of nanomagnets
that are physically connected at the vertex sites, but in
which some magnetic material has been extruded to leave
an empty hole [see Fig. 2(a)]. As we will see below, the
energy hierarchy between the four possible vertex types can
be finely tuned by adjusting the hole diameter. To illustrate
this property, we first compute the micromagnetic energy
[39,40] (also see the Supplemental Material [10]) of these
four vertex types [see Figs. 2(b) and 2(c)]. The key result is

the capability to change the energy hierarchy between type
I and type II ice-rule vertices by varying the hole diameter,
while keeping type III topological defects and type IV
vertices much higher in energy. The crossing point where
type I and type II vertices have the same energy suggests
that the hole diameter can serve as a knob for exploring
different variants of the 16 vertex model. In particular, a
Coulomb phase physics should be observed when type I
and type II vertices have the same energy.
To test these predictions, we have fabricated a series of

square grids made of permalloy, with a material-
free circular region at the vertex sites. The grids are
100-nm-wide, 25-nm-thick, and contain 900 vertices
(i.e., 1860 pseudo-spins). The vertex-to-vertex distance is
set to 500 nm and the hole diameter ϕ is varied between
lattices, from 70 to 120 nm, typically [10]. The permalloy
grids were field demagnetized and the resulting magnetic
configurations are subsequently imaged using a magnetic
force microscope (see Supplemental Material [10]).
The magnetic configurations of six demagnetized lattices

with different hole diameters are reported in Fig. 3(a) [10].
For large holes (ϕ ¼ 120 nm), the system is close to the
antiferromagnetic ground state configuration built from
type I vertices. The two possible degenerate antiferro-
magnetic domains, shaded in blue and green in Fig. 3(a),
are separated by Faraday lines [colored in red and blue in
Fig. 3(a)]. As the hole diameter is reduced, the patches of
type I domains become smaller, and more type II vertices
are observed. Interestingly, for hole diameters of about
ϕ ¼ 72 nm, the populations of type I and type II vertices
(35% and 65%, respectively) are comparable to those
expected in the square ice manifold. These findings indicate
that the magnetic correlations can be changed gradually by
varying the hole diameter and suggest that micromagnetism
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FIG. 2. (a) Electron micrograph of one lattice. Scale bar is
500 nm. (b) Micromagnetic energy of the four vertex types as a
function of the hole diameter. (c) Micromagnetic configurations
of type I, II, III, and IV vertices. Black arrows represent the local
direction of magnetization, while the blue and red contrast codes
for the divergence of the magnetization vector.
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can be used as a knob to explore different regimes of the 16
vertex model. In particular, if properly chosen, the hole
diameter could be adjusted to reach the Coulombic spin
liquid phase associated with the square ice [41–44].
To confirm this result, we have computed the associated

magnetic structure factors (MSFs), averaged over four
measurements for each hole diameter [Fig. 3(b)] [10].
The MSF analysis indeed shows that tuning the hole
diameter allows visualizing several regimes of the 16
vertex model. For the largest holes, the diffraction pattern
is characterized by Bragg peaks at the corners of the
Brillouin zone. These Bragg peaks reveal the antiferro-
magnetic ground state ordering [45]. When reducing the
hole diameter, the MSF exhibits a diffuse but structured
pattern, typical of the square ice [41,42]. We thus provide a
purely two-dimensional artificial system in which to
observe both the Coulombic spin liquid of the square ice
and the conventional antiferromagnetic order. We empha-
size that, for each hole diameter, four different lattices are
imaged and found to be in a similar state [10]. Our
demagnetization protocol allows us to reach efficiently
and reproducibly collective low-energy states, consistent
with other studies [41,42]. Finally, recalling that the square
ice is the high-temperature regime of the F model, the
question we address next is to what extent the configuration
series reported in Fig. 3 can be accounted for by the
thermodynamics of the F model.
Approaching the physics of the F model.—Answering

this question first raises the issue of the density of ice-rule
defects usually present in artificial systems. Reducing the
energy gap between type I and type II ice-rule vertices
appears as a necessary but not sufficient condition to avoid
trapping topological defects. For example, previous works

on square ice systems with a height offset [41–43] or
incorporating interaction modifiers [44] showed that the
monopole density usually remains high, on the order of
10% in field demagnetized arrays [41,42], while not 20%
[43] or more [44] in thermally active systems. Having such
a high defect density is detrimental, and all the topological
properties of the F model would be washed out in these
previously proposed designs.
The salient feature of our strategy is precisely the fact

that the EI=EII → 1− condition is met (EI and EII standing
for the energy of type I and type II vertices, respectively),
while keeping marginal the density of ice-rule defects.
Regardless of the hole diameter, the residual fraction of
defects in our lattices is 1% typically or less. In particular,
in the lattices where the EI=EII → 1− condition is
approached, we are able to image many Faraday loops
that are not interrupted by an ice-rule defect (there
are typically 10 times more Faraday loops than topo-
logical defects when ϕ < 85 nm). This contrasts with
previous literature in which these two quantities are similar,
when ice-rule defects are not even in a higher proportion
(see, for instance, the Supplemental Material [10] and
Refs. [46–48]).
Describing our experimental results in terms of Faraday

loops is thus relevant. Some of the Faraday lines we imaged
form closed and chiral loops, extending entirely within the
lattice. As predicted, these loops have parity properties
[29], and both parities are equally populated in our experi-
ments [see colored histogram in Fig. 4(a)]. Closed loops do
not carry any net polarization and then must have zero
magnetic susceptibility. Other Faraday lines form open
strings spanning across the system and ending at the lattice
boundaries. Indeed, because of the finite size of our arrays,
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FIG. 3. Real space (a) and reciprocal space (b) analyses of the magnetic configurations obtained after demagnetizing six lattices
having different hole diameters ϕ. (a) The two degenerate antiferromagnetic domains are shaded in blue and green. These type I domains
are separated by Faraday loops made of type II vertices and represented by directed lines colored in blue and red depending on their
parity. Faraday lines having different parities never intersect, except in the presence of an ice-rule defect (shown by a colored open
circle). (b) The magnetic structure factors are averaged over four real space configurations (i.e., 3600 vertices and 7440 spins) for each
hole diameter to improve statistics and are calculated for wave vectors covering�6 reciprocal lattice units (RLUs). Intensity scale is the
same in all six MSFs.
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the Faraday lines can remain open and anchored at the
lattice edges. Many of these lines as well do not host any
ice-rule defect, and thus carry a net polarization. Finally, we
observe that loops having the same parity can intersect,
whereas loops of opposite parity never cross [29].
Analyzing the series of lattices as a whole, two main

features are observed. First, the loop density continuously
decreases as the hole diameter is increased [see Fig. 4(a)].
This effect is particularly pronounced for the smallest
loops, whose amount drops by more than an order of
magnitude through the series [see Fig. 4(b)]. This is a direct
evidence of the contraction of Faraday loops as the system
approaches the antiferromagnetic ground state. The second
feature is the change of the Faraday loop curvature. Close to
the ice regime, the Faraday loops have a meandering
shape, whereas they become straighter when type I
domains develop. This can be illustrated by plotting the
average number of times a loop changes direction [see
Fig. 4(c)]. We interpret this result as a consequence
of the ordered background tension, which becomes more
significant as the effective temperature of the system is
reduced.
Interestingly, the magnetic structure factors reported in

Fig. 3(b) also suggest a gradual change of the spin-spin
correlations across the lattice series. When ϕ ¼ 72 nm, the
MSF strongly resembles the one of the square ice, i.e., a
diffuse but structured background with emerging pinch
points. When 80 ≤ ϕ ≤ 90 nm, the MSFs show the coex-
istence of an icelike background and Bragg peaks asso-
ciated with an antiferromagnetic ordering. The icelike
background becomes fainter as ϕ increases, whereas the

Bragg peaks become more intense. Finally, when
ϕ ≥ 90 nm, the icelike background has totally disappeared
and the MSFs only exhibit intense Bragg peaks. It is thus
tempting to consider the lattice series as an approximate of
the F model probed at different fictional temperatures,
from the high-temperature correlated ice regime to a low-
energy antiferromagnetic state, via several intermediate
temperatures.
We might argue that the presence of a few ice-rule

defects is sufficient to make the system fluctuate and to
ultimately order the lattice in a conventional manner,
washing out the topological properties of the Faraday lines.
We believe this is only partly true when approaching the
antiferromagnetic ground state. The main reason is that ice-
rule defects have then local dynamics, and the excursions
they can make outside their loop are extremely limited.
This can be understood by illustrating the motion an ice-
rule defect can make in a configuration observed experi-
mentally [see Fig. 5(a)]. The potential moves for the two
imaged defects are represented by colored arrows. A red
arrow corresponds to a forbidden spin flip event as it
generates a highly energetic all-in or all-out state. A green
arrow indicates a potential spin flip with no energy cost;
i.e., the ice-rule defect is free to move in this direction. A
yellow arrow is associated with a motion having a finite
energy cost due to the creation of a new type II vertex, thus
increasing the loop length. At low enough effective temper-
ature, ice-rule defects are confined within their loop. When
they have the opportunity to penetrate into the antiferro-
magnetic background, they are immediately pushed back
into their loop [see Fig. 5(b)]. As a consequence, the few
residual ice-rule defects remaining in our lattices are less
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FIG. 5. (a) Two Faraday lines bridged by a pair of ice-rule
defects. The schematics on the right side illustrate the local
environment of the topological defects and the energy cost
associated with a spin flip event. (b) Specific case when
propagating the white defect into the type I domain: once the
defect has moved into the domain, it is statistically likely that it
will be pushed back into the domain wall.
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and less capable to unwind the Faraday loops, and the
dynamics is expected to freeze as the ground state is
approached. We then conclude that the few ice-rule defects
we observe experimentally do not affect much the proper-
ties of the Faraday loops, and our system is a good
approximate of the F model.
Finally, we emphasize that the strategy proposed in this

Letter has broader applicability than just the F model and
could be applied to other geometries. For example, tuning
the vertex energy or hierarchy might be of potential interest
in a variety of square-based lattices [49], such as the Shakti
[50], Tetris [51], or Saint George [52] lattices.
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