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Within the mature field of Anderson transitions, the critical properties of the integer quantum Hall
transition still pose a significant challenge. Numerical studies of the transition suffer from strong
corrections to scaling for most observables. In this Letter, we suggest to overcome this problem by using the
longitudinal conductance g of the network model as the scaling observable, which we compute for system
sizes nearly 2 orders of magnitude larger than in previous studies. We show numerically that the sizable
corrections to scaling of g can be accounted for in a remarkably simple form, which leads to an excellent
scaling collapse. Surprisingly, the scaling function turns out to be indistinguishable from a Gaussian. We
propose a cost-function-based approach and estimate ν ¼ 2.609ð7Þ for the localization length exponent,
consistent with previous results, but considerably more precise than in most works on this problem.
Extending previous approaches for Hamiltonian models, we also confirm our finding using integrated
conductance as a scaling variable.
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Introduction.—In the field of critical phenomena, the
renormalization group framework explains the significance
of universal critical exponents and provides recipes to
calculate them from experimental or numerical data [1].
One such method uses finite-size scaling and allows us to
determine the exponent ν, which governs the divergence of
the emergent length scale (usually the correlation length)

ξ ∼ jxj−ν: ð1Þ

Here, the control parameter x is assumed to be in the
vicinity of its critical value xc ¼ 0. Finite-size scaling
considers a (preferably) dimensionless observable F for
various x in a system that has a finite extent L in one or
more directions. If L exceeds all microscopic length scales
and is sufficiently close to the fixed point, F can only
depend on the dimensionless ratio L=ξ, or

Fðx; LÞ ¼ FðL1=νxÞ: ð2Þ

When this single-parameter scaling ansatz is valid, we
can plot Fðx; LÞ against z ¼ L1=νx and determine the value
of the critical exponent ν as the number that gives the best
collapse of the data. Beyond its simplicity, the power of this
approach rests in the fact that the scaling function FðzÞ
does not need to be known a priori or expanded around
z ¼ 0, but is obtained as a by-product.
Here we are concerned with critical properties of

numerical models for the noninteracting integer quantum

Hall transition (IQHT) [2–4]. The divergent length scale ξ
is the localization length of single-particle wave functions.
Chalker and Coddington (CC) proposed a simple network
model [5] for the transition and analyzed the dimensionless
quasi-1D Lyapunov exponents for systems of varying
width L. Using the scaling ansatz (2) they obtained
ν ≃ 2.5� 0.5. Subsequent studies also relied on the ansatz
(2) and obtained ν in the range 2.3–2.4 with error bars
≳0.03, see the review [6] and references therein.
This state of affairs changed drastically when Slevin and

Ohtsuki [7] reconsidered scaling in the CC model with
refined numerical accuracy and found that their data could
not be fit to the ansatz (2) due to strong corrections to
scaling coming from irrelevant variables. In this case, one
has to add the least-irrelevant scaling variable with expo-
nent y < 0 as an argument in the scaling function. To
leading order in x, this results in the ansatz

Fðx; LÞ ¼ FðL1=νx; L−yÞ: ð3Þ

This modification makes the use of a simple scaling
collapse with L1=νx impossible. Instead, one must expand
the right-hand side of Eq. (3) as a polynomial and
determine a large number of unknown parameters from
tedious least-squares fitting [8–10]. It is evident that a wide
range of system sizes L necessitates the use of polynomials
of sufficiently high order, increasing the number of
fitting parameters and partially counteracting the desired
gain in accuracy. Thus, while Ref. [7] reported the value
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ν ¼ 2.593½2.587; 2.598�, most subsequent papers reported
considerably larger error bars, as well as some scatter in the
values for ν (ν ¼ 2.56–2.62) [8–12]. Also, no consensus
has been reached on the value of jyj besides that it likely is
much smaller than unity.
In spite of intensive efforts, more than a decade after the

recognition of the importance of irrelevant corrections, the
IQHT still evades full understanding. In contrast, for other
Anderson transitions ν is typically known to three digit
accuracy [4].
In fact, the situation is even more severe: an increasing

number of studies has questioned the very nature of the
IQHT as a conventional localization transition with well-
defined universal critical exponents. Notable examples
include studies of different continuum models and lattice
models [13,14], Dirac fermions [15], network models with
two channels [16,17], random geometry [18,19], and
models with dissipation [20]. Also, various versions of
the Wess-Zumino model were proposed as analytical
theories of the IQHT [21–23], culminating in the recent
proposal of a conformal field theory with only marginal
perturbations (ν ¼ ∞) [17,24–26]. As a consequence of
insufficient accuracy in numerical results, there is currently
no consensus on any of the above conjectured deviations
from the standard scaling scenario.
There are numerical studies where scaling variables with

no irrelevant corrections to scaling were observed: the
scattering-matrix-based variable [12], the number of con-
ducting states [13], and the curvature of Lyapunov expo-
nents at x ¼ 0 [6]. However, since numerically accessible
system sizes are limited in these approaches, the resulting
values of ν have to be considered cautiously.
In this Letter, we consider the longitudinal Landauer

conductance of standard network models as the finite-size
scaling variable, F ¼ gðx; LÞ. Unlike the quasi-1D
Lyapunov exponent, the longitudinal conductance, which
is defined for two-dimensional systems, can be and has
been measured in experiment [27]. However, in numerical
simulations, it also suffers from irrelevant contributions, see
Fig. 1 (top).
As our main idea, we demonstrate an empirical ansatz for

a rescaled conductance grðx; LÞ, which to very high
accuracy fulfills the standard single-parameter scaling
without any observable irrelevant corrections. This insight
allows us to faithfully reintroduce a scaling collapse
analysis for the IQHT, involving data for system sizes
varying by a factor of 32, see Fig. 1 (bottom). The quality of
the collapse is reminiscent of long-established scaling
behavior found in classical statistical mechanics. In addi-
tion, we find the scaling function to be a simple Gaussian
for not too large arguments.
We propose a cost-function approach to quantify and

automate the search for the critical exponent ν from the best
scaling collapse. For technical reasons, we change to the
rescaled median conductance for this analysis. Taking into

account variations in (i) minimal system sizeLmin, (ii) maxi-
mal tuning parameter xmax, and (iii) lower conductance
cutoff, we obtain ν ¼ 2.609ð7Þ. We also report consistent
results from the finite-size scaling of the x-integrated
median conductance.
Rescaled conductance and scaling collapse.—We con-

sider the single-channel CC network model [5] in a
rectangular geometry with L × aL nodes and periodic
boundary conditions in the direction with length aL. For
each disorder realization, the Landauer conductance in the
direction with length L is obtained from the scattering
matrix computed efficiently with the numerical method
described in our previous work [17]. The conductance
distribution depends on a parameter x that drives the IQHT,
with x and −x equivalent by symmetry of the model, and
xc ¼ 0. For square samples (a ¼ 1), distributions of the
critical (x ¼ 0) Landauer conductance take on a character-
istic non-Gaussian shape [3,4], while at larger x or L the
distributions broaden even more and develop long tails, see
Appendix A. We collectedN ≃ 10 000 disorder realizations
for each system size.
The disorder-averaged (mean) conductance gðx; LÞ is

shown by dots in Fig. 1 (top). The data are qualitatively

FIG. 1. Top: the mean longitudinal conductance gðx; LÞ for CC
networks of L × aL nodes with aspect ratio a ¼ 1. The solid lines
represent cubic-spline interpolations of the data (dots). Bottom:
scaling collapse of the rescaled mean conductance, Eq. (5), for
ν� ¼ 2.609 with the restriction x ≤ xmax ¼ 0.4. Inset: shows the
same data vs ðL1=ν⋆xÞ2 on a logarithmic scale. The resulting
straight line (dashed line is a guide to the eye) indicates that the
scaling function is a Gaussian for not-too-large arguments.
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similar to that of dimensionless Lyapunov exponents in the
apparent lack of a unique crossing point of differentL traces.
In the standard scaling picture, this implies the importance of
an irrelevant scaling field u1ðxÞ in the ansatz gðx; LÞ ¼
g½L1=νu0ðxÞ; L−yu1ðxÞ�, where u0ðxÞ is the relevant scaling
field. While u0;1ðxÞ are generally unknown, their leading-
order behavior for x ≪ 1 is u0ðxÞ ∼ x and u1ðxÞ ¼ const,
resulting in gðx; LÞ ¼ gðL1=νx; L−yÞ, cf. Eq. (3).
In what follows, we will demonstrate that the conduct-

ance exhibits the factorized form

gðL1=νx; L−yÞ ¼ g0ðL1=νxÞg1ðL−yÞ: ð4Þ
If the ansatz (4) holds, the rescaled conductance, which we
define as

grðx; LÞ ¼ gðx; LÞ=gðx ¼ 0; LÞ; ð5Þ
will have no irrelevant contribution and should show a
scaling collapse,

grðx; LÞ ¼ g0ðL1=νxÞ=g0ð0Þ ¼ grðxL1=νÞ: ð6Þ
In Fig. 1 (bottom), we plot grðxL1=νÞ for a range of sizes

L varying by a factor of 32. The perfect collapse for ν ¼
ν⋆ ¼ 2.609 shows one of our main results: the rescaled
conductance is a scaling observable without irrelevant
contributions.
To investigate the functional form of the scaling function

that controls the conductance gðx; LÞ in the large-L limit
when irrelevant corrections are practically absent, we plot
gr as a function of ðxL1=ν⋆Þ2 on a logarithmic scale, see the
inset in Fig. 1 (bottom). The resulting straight line indicates
that the scaling function is a simple Gaussian. This
surprising result places strong constraints on putative
analytical theories of the IQHT [26]. Notice that we do
not expect the scaling function to remain Gaussian for large
values of the argument, since this corresponds to the
localized phase with g ∼ e−L=ξ.
In order to quantitatively analyze the quality of the

scaling collapse beyond visual inspection and to take into
account errors of the raw data, we proceed with a cost-
function analysis. Because of the aforementioned non-
Gaussian shape for conductance distributions for large x
and L, the mean and its error are difficult to estimate with a
limited number of realizations. Therefore, we prefer to base
the subsequent analysis on the median conductance,
denoted by γðx; LÞ. Our analysis supports the expectation
that the critical exponent ν is universal and thus can be
found from either g or γ. This is not true for the scaling
function, which shows slight deviations from a Gaussian
for γ. To find the error of the median, we use the asymptotic
variance formula σ2 ¼ ½4NP2ðγÞ�−1, where PðγÞ is the
spline-interpolated probability distribution of g evaluated
at g ¼ γ and N is the number of disorder realizations.
We arrange the system sizes in increasing order

L1 < … < LNL
. For each system size Li, we define

fiðzÞ ¼ γrðLi; x ¼ zL−1=ν
i Þ using a cubic-spline interpola-

tion of the rescaled median γrðLi; xÞwith respect to x for all
x that fulfill (i) x ≤ xmax and (ii) γrðLi; xÞ ≥ γr;min.
Restriction (i) is required by the approximation u0 ∼ x in
Eq. (3), while (ii) allows us to exclude too heavily skewed
conductance distributions for which even the estimate of
the median might become problematic. Both conditions
together define a range z ≤ zmax

i . We compute the error
δiðzÞ of fiðzÞ by error propagation using the error σðLi; xÞ
of γðLi; xÞ.
Single-parameter scaling means that, for appropriately

chosen ν, all fiðzÞ should collapse onto a single curve
defining the scaling function. We thus assert that the
random variable fi − fj is Gaussian distributed with zero
mean and variance δ2i þ δ2j . For i < j we can evaluate
the collapse quality for z ∈ ½0; zmax

i;j �, with zmax
i;j ¼

minðzmax
i ; zmax

j Þ, using the following definition of a cost
function:

λðνÞ ¼ 1

NP

X

i<j

1

zmax
i;j

Z
zmax
i;j

0

jfiðzÞ − fjðzÞj2
δ2i ðzÞ þ δ2jðzÞ

dz; ð7Þ

where the summation is over the NP ¼ NLðNL − 1Þ=2
pairs of distinct system sizes. The best ν is the one that
minimizes the cost function, and the scaling hypothesis can
only be accepted if the minimum of the cost function is
smaller than unity.
In Fig. 2 (top), we show λðνÞ for xmax ¼ 0.7,

γr;min ¼ 0.003, and for system sizes L ≥ Lmin ¼ 144 (red
solid line). The optimal ν falls close to 2.609, where λ ≤ 1
indicates an excellent collapse. Choosing γr;min ¼ 0.02 and
0.03, we obtain the red dashed and dotted curves, respec-
tively. Their minima are indicated by arrows. Likewise,
consistent results are obtained for doubling Lmin, see the
green lines. We exclude minima if λ½νminðγr;min; LminÞ� > 1.
Taking the spread of all included minima (the shaded
region in Fig. 2), we obtain

ν ¼ 2.609ð7Þ; ð8Þ
which is in the previously reported range but with the error
that is smaller than in most previous studies.
Consistent results for ν are obtained from the synthetic

data method. Using the input data for γr and its error, we
generate 400 sets of synthetic data on which to repeat the
cost-function analysis of Eq. (7). The bottom panel of Fig. 2
shows the histograms of the best values of ν obtained this
way, for Lmin as above and γmin ¼ 0.003, 0.02. The means
for all histograms fall within the range indicated in Eq. (8),
and their standard deviation is on the order of 0.01.
We repeat the cost-function analysis for Lmin ¼ 144 with

three more choices of xmax ¼ 0.15, 0.2, 0.25, see Fig. 3.
The resulting spread of the minima λmin (the shaded region)
is nearly identical to that of Fig. 2 and includes the estimate
of Eq. (8).
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Integrated conductance.—Once a scaling observable is
thought to obey the single-parameter scaling like grðx; LÞ ¼
grðxL1=νÞ above, an alternative option for the evaluation
of ν is via the x-integrated observable

g̃rðLÞ ¼
Z

∞

0

grðx; LÞdx ∼ L−1=ν; ð9Þ

where the predicted scaling behavior on the right-hand side
follows from a substitution. Sidestepping the scaling col-
lapse check, this approach, however, crucially requires that
the system sizes are large enough so that the integrand is
negligible in regions where higher-order-in-x corrections to
the scaling function become important (cf. the discussion of
xmax above). We thus chose L ≥ 144.
To compensate for undersampling, the rare regions in the

tails of the conductance distributions discussed earlier, we
integrate the median rescaled conductance γr. We generate

200 artificial datasets that lie within the error bars of
γrðx; LÞ, apply cubic-spline interpolation and integration,
and estimate the mean and standard deviation of the 200
values to be γ̃rðLÞ and its associated error. The results are
shown in Fig. 4. The fit to Eq. (9) yields ν consistent with
the result (8).
We remark that a similar integrated scaling observ-

able for the IQHT was proposed and studied previously
in Refs. [13,28]. These works considered the number of
conducting eigenstates of lattice and continuum
Hamiltonian models, but did not include a rescaling of
the energy-resolved data, which thus may have had
irrelevant contributions that changed the right-hand side
of Eq. (9) and affected the extracted value of ν. Moreover,
the use of the exact diagonalization limited the available
system sizes, which might also explain a significantly
smaller result [13] for ν ¼ 2.48ð2Þ.

FIG. 3. The cost-function analysis for Lmin ¼ 144, restricted
to data points where γr ≥ γr;min and x ≤ xmax. The values of
γr;min in Fig. 2 are used in tandem with xmax ¼ 0.15, 0.2, 0.25.
The shaded region spans the minima for all combinations of
these parameters that result in minimum cost λmin < 1. Results
are consistent with Eq. (8).

FIG. 2. Top: the cost function λðνÞ. Minimum ν� estimates the
critical exponent of the IQHT. We restrict to data points where
γr ≥ γr;min, L ≥ Lmin for several choices of γr;min, Lmin. In this
analysis,we fix xmax ¼ 0.7. The shaded region spans the minima
for all combinations of these parameters that result in minimum
cost λmin < 1. Note that we exclude L ¼ 72 in this analysis but
include it in the scaling collapse of Fig. 1. Bottom: histograms for
the best ν obtained from the synthetic data method described in
the main text below Eq. (8).

FIG. 4. Scaling of the x-integrated rescaled median conduct-
ance of the CC model. A power-law fit for L ≥ 144 is denoted by
a dashed line, the fit parameters are given in the legend. Inset:
shows data in a tilted version for better visualization.
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Conclusions and outlook.—To summarize, in the context
of the IQHT, we have identified the rescaled longitudinal
Landauer conductance of the CC network model as a
promising scaling observable. It satisfies the single-param-
eter scaling and exhibits no detectable irrelevant correc-
tions. This allows us to sidestep the tedious polynomial
expansion of scaling functions that is commonly done in
the literature and apply the intuitive and straightforward
scaling collapse for a wide range of system sizes with
Lmax=Lmin ¼ 32. We devise a cost-function approach to
quantify the quality of the collapse and automate the
extraction of the critical exponent. Our result ν ¼
2.609ð7Þ is consistent with previous estimates in the
literature but with higher accuracy than most studies.
This strategy also gives access to the scaling function of

the mean conductance, which takes a surprisingly simple
Gaussian form; this will inform further analytical studies on
the subject. Inspired by previous works [13,28] on the total
number of conducting states in Hamiltonian systems, we
also consider the integral of the rescaled conductance
which sidesteps the necessity for a scaling collapse and
allows for even more simple fitting.
Our findings might also offer a new approach to

experimental studies of the IQHT, even though critical
properties in real samples may be strongly affected by the
presence of electron-electron interactions. The latest scal-
ing analysis of experimental data is based on the slope of
the Hall conductivity with respect to the magnetic field
[29–31]. However, the longitudinal conductance peak as a
function of the magnetic field is routinely measured as well.
While earlier studies have already used the peak width as a
scaling observable [2], we propose to consider the full
shape of the peak measured for various sample sizes below
the phase coherence length, a regime reached in Ref. [31].
After centering to the respective peak maximum and
performing rescaling as in Eq. (5), a scaling collapse could
be achieved. In order to get a good estimate of the mean or
median conductance, it will be essential to revisit the issue
of the full conductance distributions, see Ref. [27] for
previous experimental work.
We emphasize that the results presented above do not

settle the question about the validity of the marginal scaling
scenario [24–26] according to which the exponent ν would
be scale and model dependent [17]. While our results lower
the upper bound for a possible scale dependence of ν, it is
conceivable that it might be revealed in future studies
reaching even larger scales or accuracies. We also suggest
to attempt a scaling collapse of the rescaled conductance
distribution as a whole. Further, it would be interesting to
test if a rescaling procedure can also eliminate the irrelevant
contributions to the quasi-1D Lyapunov exponents, which
is a standard scaling observable in the literature [7].
Regarding a possible model dependence of ν, recent

studies indeed seem to point in this direction [13–
17,19,20]. As a demonstration of the scaling collapse

method applied for an alternative model, we consider the
two-channel CC (CC2) network model [16,32] in
Appendix B. We show that the rescaled conductance
collapses for νCC2 ¼ 3.8ð1Þ, significantly different from
the exponent for the (single-channel) CC case but in-line
with recent results using a different method [17].
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Leopoldina through Grant No. LPDR 2021-01, by a
MCQST-START fellowship, and by the Munich
Quantum Valley, which is supported by the Bavarian state
government with funds from the Hightech Agenda
Bayern Plus.

Appendix A: Conductance distributions.—We present
conductance distributions for N ≃ 10 000 square CC net-
work models at fixed x ¼ 0 and x ¼ 0.128, see Fig. 5.

FIG. 5. Top: critical conductance distribution for square CC
network model of size L. Bottom: conductance distribution at
x ¼ 0.128 (noncritical) for square CC network model of size L.
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Away from criticality (x > 0), the distribution becomes
increasingly skewed with larger system size. The shape of
these distributions motivates the use of the median rather
than the mean for the scaling collapse analysis of the
main text.

Appendix B: The two-channel CC network model.—The
two-channel generalization of the CC model was first
studied in Refs. [16,32]. The present authors previously
studied this model and its phase diagram in Ref. [17] and
we refer to this reference for a detailed discussion. Here we
limit ourselves to the diagonal (xc þ x; xc þ x) in the phase
diagram of the CC2 model, which is spanned by the tuning
parameters ðxa; xbÞ of the individual layers and xc ¼ 0.227.
At the point ðxc; xcÞ, the critical line of the phase diagram
intersects the diagonal [17]. As for the CC case, we
obtain the rescaled longitudinal conductance for the CC2
model at sizes L ¼ 288, 576, 1152, and 2304 (N ≃ 1000
realizations) at various x > 0 and examine the scaling
collapse.
In Figs. 6 and 7, we repeat the analysis of the

main text. We find νCC2 ¼ 3.8ð1Þ, substantially

different from our estimates for the single-channel
case. Our finding also agrees with our result for the
same critical point using an alternative scaling variable [17],
ν ¼ 3.90ð5Þ.
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