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In this Letter, we analyze the dipole-dipole correlations obtained from the molecular dynamics
simulations for strongly and weakly polar model liquids. As a result, we find that the cross-correlations’
contribution to the system’s total dipole moment correlation function, which is directly measured in the
dielectric spectroscopy experiment, is negligible for weakly polar liquids. In contrast, the cross-
correlations’ term dominates over the self-correlations’ term for the examined strongly polar liquid.
Consequently, our studies strongly support the interpretation of the dielectric spectra nature of
glass-forming liquids recently proposed by Pabst et al.
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Despite the fact that broadband dielectric spectroscopy
(BDS) is an experimental technique commonly used to study
molecular dynamics for more than 100 years [1,2], the
comprehensive understanding of the nature of the obtained
spectra is still missing [3,4]. Therefore, it is not surprising
that the interpretation of the BDS spectral shape describing
the structural relaxation is the subject of the endless and hot
debate on the physics of glass-forming liquids [5–7]. In this
context, the notable advantages of BDS—the extremely
broad range of measured relaxation times (18 decades) [8]
and diversity of studied materials [9]—make the disclosure
of the fundamental features of BDS relaxation spectra even
more puzzling. Hence, the supplementation of BDS spectra
with results delivered by other experimental techniques
probing the corresponding molecular motions is crucial [9].
One noteworthy technique is depolarized dynamic light
scattering (DDLS), which, similar to BDS, is sensitive to
molecular reorientations [10]. However, the simple com-
parison of BDS and DDLS spectra reveals significant
differences. The stretching parameter describing the dielec-
tric-loss peak corresponding to the α relaxation process
usually varies from 0.5 to 0.9 for weakly and strongly polar
liquids, respectively [4]. In contrast, DDLS spectra reveal a
quasiuniversal shape of the stretching parameter value
approximately equal to 0.5 [11].
Recently, a promising solution to the problem, and

hence, entirely new light on the origin of the broadening
of relaxation spectra registered by BDS, has been found by
Pabst and co-workers [12,13]. The authors postulated that
the spectrum detected by a BDS originates from two types
of correlations occurring between the molecules of polar
liquids. The first one, which vanishes faster, describes how
long a given molecule “remembers” its initial orientations.
It is called self-correlation. The second one describes the
time evolution of the other molecules with respect to the

initial orientation of the chosen one, and it is called cross-
correlation. In contrast to a BDS experiment, a DDLS
probes mainly the self-correlations. Experimentally, it has
been shown that the spectra obtained by both methods
correspond to each other only for the weakly polar liquids.
This accordance was explained assuming a negligible role
of the cross-correlations. However, when the polarity of
molecules increases, the role of the cross-correlations
presumably increases as well. Therefore, different values
of the stretching parameter for the BDS and DDLS spectra
are observed. Hence, one can expect that the narrower
shape of the dielectric spectra results from the existence of
noticeable cross-correlations. By extracting the DDLS
spectrum from the BDS spectrum, Pabst et al. tried to
reveal the nature of the cross-correlations’ spectral shape.
Performing such an analysis, they pointed out that the
shape of the cross-correlations’ spectrum can be described
by the Debye function (for an illustration, see Fig. 1).
At this point, it must be noted that the common

interpretation of the spectra broadening relates this phe-
nomenon to the existence of the relaxation time distribution
[14–16]. Consequently, Pabst et al., suggesting that the
separation of timescales of the self- and cross-correlations
is the main factor leading to the broader shape of the
dielectric spectrum, shed new light on the problem of the
proper interpretation of the BDS results. Moreover, their
postulate is supported by the theory proposed by Déjardin
et al. [17,18], according to which the response of a pair of
dipoles consists of the two relaxation processes associated
with the single and collective molecular motions. The
relaxation times of those processes depend on the param-
eter λ ∼ μ2 (μ is a molecular dipole moment), an increase of
which separates the timescales of both processes. Hence,
the experimentally observed correlation between the dielec-
tric strength and the shape of the dielectric-loss peak can be

PHYSICAL REVIEW LETTERS 129, 025501 (2022)

0031-9007=22=129(2)=025501(6) 025501-1 © 2022 American Physical Society

https://orcid.org/0000-0003-2359-5783
https://orcid.org/0000-0002-7280-8557
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.129.025501&domain=pdf&date_stamp=2022-07-06
https://doi.org/10.1103/PhysRevLett.129.025501
https://doi.org/10.1103/PhysRevLett.129.025501
https://doi.org/10.1103/PhysRevLett.129.025501
https://doi.org/10.1103/PhysRevLett.129.025501


qualitatively rationalized [13]. Furthermore, the recent
experimental studies devoted to strongly polar liquid
revealed that two characteristic timescales are visible
during the aging process [19]. The one process mimics
the generic structural relaxation toward the equilibrium,
whereas the second one is ascribed to the evolution of the
cross-correlations’ mode. Interestingly, a similar experi-
ment performed for weakly polar liquid with negligible
dipole-dipole interactions results in a recovery process
exhibiting a single exponential character. However, it must
be stressed that, so far, there is no direct experimental
evidence that the cross-correlations are marginal for weakly
polar liquids. Moreover, it has not been directly shown that
the cross-correlations decay slower and that their magni-
tude increases with the polarity of a molecule. Therefore,
the proposed concept of the BDS spectra nature needs to be
directly verified.
In this Letter, using the molecular dynamics simulations,

we lay the cornerstone for any further studies based on
proposed explanation of the origin of the BDS spectrum
shape. For the two model systems, which differ exclusively
in the value of the dipole moment, we calculate the self- and
cross-correlations. Subsequently, we directly analyze their
shapes and estimate their relative contributions to the
correlation function of the system’s total dipole moment,
which is probed in the BDS experiment. Our findings
confirm not only that the cross-correlations dominate for
polar liquids but also that they relax in a manner similar to
Debye-like behavior. Consequently, we verify the sug-
gested interpretation of the BDS spectral shape for the first
time and deliver strong evidence for its correctness.
The dielectric experiment is designed to monitor changes

in the material polarization P induced by an external electric
field E, which changes with time [16]. However, typically it
is realized in the frequency domain, which means that the
periodic EðωÞ is used, where ω is the angular frequency.
Then, the real ϵ0 and the imaginary ϵ00 parts of the complex

dielectric permittivity ϵ�ðωÞ ¼ ϵ0ðωÞ þ iϵ00ðωÞ reveal the
existence of relaxation processes, i.e., aroundω correspond-
ing to the characteristic time of the given relaxation process
τ, ϵ0ðωÞ exhibits a steplike decrease, whereas the relaxation
peak is detectable in ϵ00ðωÞ. This is due to both parts of ϵ�ðωÞ
being related to the Fourier-Laplace transformation of the
decay function of polarization CðtÞ ¼ hPðtÞPð0Þi, where hi
denotes an ensemble average. In the simplest case of
Debye-like behavior, CðtÞ takes the exponential form
CðtÞ ¼ A exp½−ðt=τÞ�, where A is a parameter [20].
However, when the spectrum exhibits a broader shape,
the Kohlrausch-Williams-Watts (KWW) function is com-
monly applied,

CðtÞ ¼ A exp

�
−
�
t
τ

�
βKWW

�
; ð1Þ

where βKWW is the already mentioned stretching parameter.
Since PðtÞ is proportional the total dipole moment of the
system MðtÞ ¼ P

N
i¼1 μiðtÞ, CðtÞ can be defined as

CðtÞ ¼ hMð0ÞMðtÞi ¼
XN
i¼1

XN
j¼1

h μið0ÞμjðtÞi: ð2Þ

Finally, one can rewrite CðtÞ as the sum of the self-
correlation term

CsðtÞ ¼
XN
i¼1

h μið0ÞμiðtÞi; ð3Þ

and cross-correlation term

CCðtÞ ¼
XN
i¼1

XN
j≠i¼1

h μið0ÞμjðtÞi: ð4Þ

According to Eqs. (3) and (4), the information on the time
evolution of the molecules’ dipole moments is needed to
calculate CsðtÞ and CcðtÞ. Unfortunately, neither standard
experimental method measures μðtÞ. However, it is easily
accessible in the computer simulations of molecular dynam-
ics, which have another crucial advantage. Projecting model
systems intended to a specific computational experiment,
one has entire control of the physical differences between the
created molecules. It is especially important because, the
model systems, which are designed for an experiment to
verify of the Pabst et al. interpretation of the BDS spectral
shape, should possess identical molecular structures but
differ in the value of μ. Then, the model representative of
weakly polar liquids would exhibit the negligible cross-
correlations’ contribution to the total dipole correlation
function; i.e., CðtÞ should be dominated by CsðtÞ.
Contrarily, for the second model system possessing a
substantially higher μ value, one might expect the evident
role of CcðtÞ in CðtÞ. An attractive candidate for planned

FIG. 1. The schematic representation of BDS and DDLS
spectra is presented. The black line consists of two relaxation
processes resulting from self- (red line) and cross- (blue line)
correlations. Cross-correlations are characterized by Debye-like
behavior, whereas self-correlations are described by the decay
function with stretching parameter equal to 0.5.
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studies is the rhombuslike molecule (RM) [21–24], which
consists of four atoms. Then, μmight be placed along one of
two diagonals. It is worth mentioning that the shape of RM
reflects the structural anisotropy of many van der Walls
liquids and that the RM systems are relatively easy to
supercool [23]. Following our previous studies, the used
atoms represent carbon atoms, which create the benzene
ring. Consistently, the bond length between the RM’s atoms
is around 0.15 nm (the tiny difference between the real
length of the bond in the benzene ring and 0.15 nm results
from the fact that one diagonal of RM is 2 times shorter than
the other one). The stiffness of bonds, angles, and dihedrals,
as well as the nonbonded interactions between the atoms of
different molecules, are defined using the parameters of an
optimized potentials for liquid simulations all-atom force
field provided for the carbon atom of the benzene ring as
well [25]. However, in order to create specific μ, we redefine
the atoms’ charges. In this way, the herein studied RMs are
characterizes by μ equal to 0.386D and 3.86D, which are
arranged alongside the longer diagonal of the RM (this
orientation impedes the crystallization of the RM systems
[23]). As a starting point, we equilibrate the systems
containing N ¼ 16 384 molecules at NVT conditions V ¼
1643 nm3 and T ¼ 200 K, at which CðtÞ decays within
accessible time of computer simulations. The Nose-Hoover
thermostat [26–28], which is implemented in GROMACS

software [29–33], provided constant temperature conditions.
Simulation runs were performed using the velocity-Verlet
integration scheme [34] with a time step equal to 0.001 ps.
The applied cutoff for intermolecular interactions was set to
4.260 nm, which is 12 times longer than the σ parameter of
the intermolecular interaction potential. Long-range dipole-
dipole interactions have been realized by the use of the
reaction field method [35,36]. The dielectric constant of the
reaction field ϵ was predicted according to (classical from
the BDS point of view) Onsager theory [37], which for the
studyherein, the nonpolarizable polarmolecules take the form
½ðϵ−1Þð2ϵþ1Þ=ϵ�¼ðN0μ

2=ϵ0kBTÞ [38], where N0 is the
number of dipoles within the volume unit, ϵ0 is the dielectric
permittivity of vacuum, and kB is Boltzmann’s constant. In
Supplemental Material [39] we show that the use of particle
mesh Ewald summation gives identical results [40] and that
the obtained results do not depend on the system size.
As we already mentioned, the BDS experiment uses the

external electric field, which is applied to the sample.
Therefore, we examine RM systems not only at equilibrium
conditions but also when an outer disturbance is employed.
Consequently, our computational experiment consists of
three parts, which were repeated 50 times for each RM
system. In the first step, we polarize the previously
equilibrated system by applying a constant external electric
field in direction z, Ez. It has to be noted that the applied Ez
are equal to half of 0.1kBT=μ, which ensures that our
experiment is performed in the linear response regime [16].
In the next step, an applied external electric field is

suddenly turn off, which enables the estimation of the
relaxation functions of P directly probed in the BDS
experiment. The final step is a standard simulation without
an external field for 0.2 ns, which is carried out to calculate
CðtÞ. The obtained results are presented in Fig. 2.
In the inset of Fig. 2, one might observe an average value

of the dipole moment oriented in the z direction hMZi,
which in order to fairly compare the changes taking place
within the systems, has been scaled by μ. Interestingly,
already this part of our study reveals evident differences
between both RM systems. The RM with a higher μ value
(blue line) exhibits higher orientational polarizability,
despite the corresponding Ez having been applied to both
systems. It suggests the existence of additional contribu-
tions to P, which might originate from a collective behavior
of molecules. Another crucial observation is that both
systems reach equilibrium within 2 ns. Hence, the applied
Ez does not polarize the system anymore, and the system’s
reaction to an outer disturbance can be quantified during
the second part of our experiment. When the external
electric field is immediately removed, the system responds,
which is observed by a decrease in PðtÞ. As we already
noted, PðtÞ can be quantified using MðtÞ. However, in our
case, only the component in the z direction is of interest.
Therefore, in Fig. 2 we present the normalized function of
the system’s total dipole moment hMzðtÞi=hMzð0Þi, and the

FIG. 2. The normalized response hMzðtÞ=Mzð0Þi and correla-
tion C0ðtÞ functions are presented. The black lines (solid and
dotted) represent the response functions and are calculated based
on the results presented in the inset. The green lines (solid and
dotted) are obtained from fluctuations at equilibrium conditions.
The dotted lines depict results obtained for weakly polar liquid,
whereas the solid ones are for strongly polar liquid. The red lines
represent fits of C0ðtÞ by a decay function described by Eq. (1).
Inset shows the time evolution of the system’s total dipole
moment in the z direction, which is forced by the applied
external electric field. The blue line is obtained for strongly
polar liquid, whereas the red line is for the weakly polar one. Note
that, if all molecules are arranged parallel to Ez, hMZi=μ ¼ N.
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starting point is the time at which we turn off Ez. Also in
this figure, one can observe evident differences between
hMzðtÞ=Mzð0Þi for both systems. The RM system with a
higher μ value relaxes slower (solid line) than the one with a
smaller μ value (dotted line). Since our experiment is
performed in the linear response regime, τ does not depend
on the Ez magnitude. Moreover, in Fig. 2 we depict
normalized CðtÞ, C0ðtÞ ¼ CðtÞ=hMð0ÞMð0Þi calculated
based on the third step of our experiment. It is crucial
because according to the fluctuation dissipation theorem,
the response of the system to external disturbance is related
to the fluctuations at equilibrium [7] CðtÞ. As one can see,
for both studied systems, hMzðtÞ=Mzð0Þi indeed corre-
sponds to the fluctuations of a corresponding quantity at
equilibrium. The slight differences result from a limitation
in hMzðtÞ=Mzð0Þi averaging, which is done for 50 inde-
pendent simulations, whereas C0ðtÞ is an average of 50
simulations and 1000 functions established from one
simulation run. The correspondence of hMzðtÞ=Mzð0Þi
and C0ðtÞ is crucial for further studies because we can
employ simulations at equilibrium, which significantly
improve the data statistics. At this point, it is also worth
mentioning that a similar value of βKWW for both systems
can be justified by the fact that we examine thermodynamic
conditions, which are far from the glass transition. The
dependence of C0ðtÞ on the thermodynamic conditions is
discussed later.
In Fig. 3, we present calculatedC0ðtÞ and its contributions

fromself- and cross-correlationsC0
sðtÞ¼CsðtÞ=hMð0ÞMð0Þi

and C0
cðtÞ¼CcðtÞ=hMð0ÞMð0Þi, respectively. Interestingly,

even though C0ðtÞ exhibit similar shapes for both RM
systems, the contributions to C0ðtÞ from the self- and
cross-correlations are totally different. In the case of the
weakly polar system (dotted lines), CðtÞ is entirely domi-
nated by the self-correlations. The role of CcðtÞ is marginal
because it gives input to CðtÞ at a level of less than 5%.
However, a totally different situation takes place for the
strongly polar liquid (see results for the second RM system).
An increase in the μ valuemeans that, due to stronger dipole-
dipole interactions, the correlations between neighboring
molecules become noticeable. This causes the role of
CcðtÞ in the total dipole correlation function to increase.
Consequently, we observe that CcðtÞ dominates over CsðtÞ
for a RM system with high μ value (solid lines). However, in
this case the role of CsðtÞ cannot be neglected because it is
still at the level of 30%. Hence, our findings prove that BDS
spectra reflect mainly self-correlations only for the weakly
polar liquids. Therefore, for those systems exclusively, the
BDS andDDLS experiments could correspond to each other.
We would like to emphasize to the readers that, similar to
previous suggestions, CsðtÞ vanishes faster than CcðtÞ. It
differs from the results obtained by Zhou andBagchi [41] for
the self-consistent continuum model of Nee and Zwanzig
[42], who find that within the studied system a single particle
orientational relaxation is slower from the collective

orientational relaxation. The noted discrepancies might be
caused by the absence of the translational motion in the
examined dipolar lattice model. Nevertheless, our results are
in accord with predictions of Déjardin et al. [17,18], who
suggest that the collective mode relaxes slower than the
single molecular one.
As we already noted, the role of self-correlations in the

relaxation process cannot be negligible for a strongly polar
system. Therefore, the corresponding BDS spectrum
contains self- and cross-contributions, wherein the self-
correlations give a smaller input located at higher frequen-
cies. The latter might lead to spectra broadening (see
schematic representation in Fig. 1), especially since our
results reveal as well thatCcðtÞ exhibits a narrower shape of
the relaxation spectrum than CsðtÞ does. It directly reflects
the postulate by Pabst et al. concerning the interpretation
of the BDS spectrum. However, in the case of the
DDLS spectrum the situation is suggested to be totally
different. Namely, Pabst et al. claim that the DDLS
spectrum originates from only the self-correlations because
this experimental technique is insensitive to the cross-
correlations. In the inset of Fig. 3, we present the calculated
C2ðtÞ ¼

P
N
i¼1

P
N
j¼1hP2(uið0ÞujðtÞ)i, which describes the

dynamics of the anisotropic polarizability tensor probed by
DDLS [P2 is the second Legendre polynomial and uiðtÞ is a
unit vector along the dipole moment of the molecule i at

FIG. 3. The normalized total dipole correlation functions and
their self- and cross-components are presented for two model
systems. The dotted lines are calculated for a representative of
weakly polar liquids, whereas solid lines are obtained for a
strongly polar liquid. The cross-correlation’s contributions are
calculated according to the relationship C0

cðtÞ ¼ C0ðtÞ − C0
sðtÞ.

The black line represents the fit of a decay function described by
Eq. (1). The values of the stretching parameter are presented for
self- and cross-correlation’s contributions to the total dipole
correlation function. The open symbols depict cross-correlation
contributions calculated directly, i.e., according to Eq. (4).
Because of the computational effort, the data are averaged over
50 independent functions (in contrast, the data presented as lines
are averaged over 5000 independent functions). Inset presents the
normalized total dipole correlation function as well as the total
and self-correlation functions of the second Legendre polynomial
for the two studied systems.

PHYSICAL REVIEW LETTERS 129, 025501 (2022)

025501-4



time t] [43–45]. As can be observed, the self-component to
C0
2ðtÞ, i.e., C0

s;2ðtÞ, overlaps C0
2ðtÞ in very good agreement

independent of the molecular polarity. This observation is
in accord with the results of the already performed
computer simulations and experiments, which pointed
out that the cross terms make only a small contribution
to C0

2ðtÞ for molecular fluids [44,45]. Moreover, from the
inset of Fig. 3 one can clearly notice the evident discrep-
ancies between the decay processes of C0ðtÞ and C0

2ðtÞ, i.e.,
C0
2ðtÞ decays faster and is broader, which is especially

visible for a strongly polar system. At this point, we would
like to mention that C0

2ðtÞ starts at a longer time than the
other functions, which is because C0

2ðtÞ considers all pairs
of molecules i and j, and therefore, its calculation [similar
to CcðtÞ] requires an enormous computational effort.
Finally, in Fig. 4 we present the evolution of C0ðtÞ and

C0
cðtÞ when the studied the systems approaching the glass

transition, which have been realized by the isothermal
compression. Comparing C0ðtÞ characterized by the similar
relaxation times, one can see that C0ðtÞ for a weakly polar
system is much broader. Furthermore, for this system, a
slowing-down in molecular dynamics results in an evident
change in βKWW (from 0.99 to 0.77 and then to 0.69).
Hence, one might suspect that βKWW tends to the suggested
value of 0.5. However, an examination of the correspond-
ing thermodynamic conditions is a very challenging task
due to the limitations of the computational experiment.
Contrarily, for strongly polar liquid, C0ðtÞ changes only
slightly; i.e., βKWW of the corresponding functions changes
from 0.99 to 0.89. Hence, the obtained C0ðtÞ follows not
only the postulate by Pabst et al. but also the experimen-
tally established correlation between the dipole moment

value and the shape of the BDS spectrum [4]. The latter
could be explained by the role of the cross-correlations in
the system’s relaxation process. For a weakly polar system,
C0
cðtÞ is marginal and persists on the same level for the

majority of time. It means that the behavior of C0ðtÞ is
determined solely by the self-correlations, which are much
broader. On the other hand, C0

cðtÞ visibly dominates C0ðtÞ
for a strongly polar system. The decrease in the self-
correlation is visible only at the initial stage of the
relaxation process, which means that its contribution is
observed at frequencies higher than the dielectric-loss peak.
The latter results only in a tiny broadening of the spectrum
because C0

cðtÞ can be still described by the Debye-like
behavior with very good accuracy.
Summarizing, in this Letter, we contribute to the recently

proposed explanation of the differences of the results
obtained by various experimental methods, i.e., BDS and
DDLS. Our experiment delivers clear evidence for the
existence of the direct relationship between the broadening
of the dielectric spectra and the role of cross-correlations of
the molecules’ dipole moments. We present that the cross-
correlations practically do not occur for weakly polar
molecules and that for this system the corresponding
spectrum is distinctly widened. Contrarily, the total dipole
correlations function is almost entirely dominated by the
cross term for strongly polar liquids. Since the cross-
correlations are characterized by the less broad relaxation
function, the corresponding dielectric spectrum is only
slightly widened. In this case, self-correlations give a tiny
contribution at the initial stage of the dielectric relaxation
process. It implies that, as established in the literature, the
relationship between the dipole moment value and the BDS
spectral shape can be immediately justified. Therefore, our
findings not only strongly support the postulate by Pabst
et al., but they also prove the existence of the experimen-
tally observed correlation. Consequently, our Letter pro-
vides a cornerstone for the proper interpretation of the
nature of a BDS spectrum.
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[26] S. Nosé, Mol. Phys. 52, 255 (1984).
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