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In classical viscous fluids, turbulent eddies are known to be responsible for the rapid spreading of
embedded particles. However, in inviscid quantum fluids where the turbulence is induced by a chaotic
tangle of quantized vortices, dispersion of the particles can be achieved via a nonclassical mechanism, i.e.,
their binding to the evolving vortices. However, knowledge on how the vortices diffuse and spread in
quantum-fluid turbulence is very limited, especially for the so-called ultraquantum turbulence (UQT)
generated by a random tangle of vortices. Here we report a systematic numerical study of the apparent
diffusion of vortices in UQT in superfluid helium-4 using the full Biot-Savart simulation. We reveal that the
vortices in the superfluid exhibit a universal anomalous diffusion (superdiffusion) at small times, which
transits to normal diffusion at large times. This behavior is found to be the result of a generic scaling
property of the vortex velocity. Our simulation at finite temperatures also nicely reproduces recent
experimental observations. The knowledge obtained from this study may form the base for understanding
turbulent transport and universal vortex dynamics in various quantum fluids.
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Turbulent diffusion in classical fluids has been studied
extensively due to its wide range of applications such as
chemical mixing in star formation [1] and airborne virus
transmission [2]. It has been known that the turbulent
eddies can carry embedded particles, leading to some well-
known time scaling of the particle separation, such as
Richardson’s t3 law [3]. However, this knowledge does not
apply to inviscid quantum fluids such as superfluid helium-
4 (He II) and atomic Bose-Einstein condensates (BECs),
since the injected particles are not entrained by the super-
fluid flow at low temperatures. Instead, a distinct transport
mechanism exists, i.e., binding to the evolving quantized
vortices.
In a quantum fluid, turbulence can be induced by a

chaotic tangle of quantized vortex lines [4], which are line-
shaped topological defects featured by a circulating flow
with a quantized circulation κ ¼ h=m, where h is Planck’s
constant and m is the mass of the bosons constituting the
superfluid [5]. The vortices evolve with time chaotically,
and they also undergo reconnections when they move
across each other [6]. Depending on the internal structure
of the vortex tangle, two forms of turbulent flows may
emerge in a quantum fluid [7,8]. The first form is called
quasiclassical turbulence, where the vortices in the tangle
can polarize locally and form bundles to mimic classical
vortices [9]. In this case, the induced velocity field can
exhibit various classical features at length scales greater

than the mean vortex-line spacing l [10,11]. On the other
hand, when the vortices in the tangle arrange themselves
randomly, an ultraquantum turbulence (UQT) with no
classical analog is generated, where the flow field fluctuates
at scales comparable to l without any large-scale motion
[12]. Particles in a quantum fluid can bind to the vortex
cores and subsequently move together with the vortices
[13–16]. Knowing how vortices diffuse in space is there-
fore crucial for understanding turbulent transport in quan-
tum fluids.
So far, there have been very limited studies on the

apparent diffusion of vortices in quantum-fluid turbulence.
On the theoretical side, the overall expansion of a decaying
random vortex tangle near a solid wall [17] and in bulk He
II [18] was simulated. However, these studies only provide
limited insights into the diffusion behavior of vortices in a
fully developed turbulence. In a recent experiment, Tang
et al. [19] decorated the vortices in UQT generated by
counterflow in He II with solidified deuterium tracer
particles. They observed that the vortices undergo anoma-
lous diffusion (superdiffusion) at small times. Their mea-
sured diffusion time exponent appears to be insensitive to
both the temperature and the vortex-line density, suggesting
a possible generic nature of this vortex-diffusion behavior.
However, since the experiment was conducted in a narrow
temperature range (i.e., 1.7–2.0 K), a reliable conclusion
cannot be achieved.
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In this Letter, we report a systematic numerical study of
the apparent diffusion of individual vortices in UQT in He
II using the full Biot-Savart simulation [20]. We reveal that
in pure superfluid the vortices in UQT indeed undergo
superdiffusion at small times with a universal diffusion
exponent regardless how dense the tangle is. At large times,
the superdiffusion transits to normal diffusion due to vortex
reconnections. Our analysis shows that this universal
diffusion behavior is caused by a generic temporal corre-
lation of the vortex velocity, which should exist in other
quantum fluids where the Biot-Savart law applies. At finite
temperatures, the viscous effect is found to only mildly
affect the vortex diffusion, which nicely explains the
experimental observations. Since UQT can be produced
by counterflow in quantum two-fluid systems such as He II
[21,22], atomic BECs [23], and superfluid neutron stars
[24,25], and it can also spontaneously emerge following a
second-order phase transition in quantum fluids via the
Kibble-Zurek mechanism [26,27], the knowledge obtained
in our study may also offer valuable insights into the
evolution and quenching dynamics of these diverse quan-
tum fluids.

Vortex diffusion in a pure superfluid.—Like many other
quantum fluids, He II can be considered as a mixture of two
miscible fluid components, i.e., an inviscid superfluid and a
viscous normal fluid (i.e., collection of thermal quasipar-
ticles) [28]. The normal-fluid fraction in He II drops with
decreasing the temperature and becomes negligible below
1 K. Experimentally, an UQT can be produced in He II at
zero-temperature limit by injecting small vortex rings [12].
Here, we adopt a similar method numerically to study
vortex diffusion in UQT in pure superfluid. As shown in
Fig. 1(a), we first place 64 randomly oriented vortex rings
(radius, Rin ¼ 0.11 mm) in a cubical computational box
(side length, D ¼ 1 mm) with periodic boundary condi-
tions in all three axial directions. These vortices are
described by the vortex-filament model [29], and each
vortex filament is discretized into a series of points. In the
absence of the normal fluid, a vortex-filament point at s
moves at the local superfluid velocity vsðsÞ as given by the
Biot-Savart law [29,30],

ds
dt

¼ vsðsÞ ¼
κ

4π

Z ðs1 − sÞ × ds1
js1 − sj3 : ð1Þ
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FIG. 1. (a) Snapshots of an evolving random vortex tangle. The red dots represent the vortex-filament points tracked for diffusion
analysis. (b) Variation of the corresponding vortex-line density LðtÞ. The enlargement in the inset shows fluctuations in L due to ring
injections. (c) Mean-square displacement of the vortices hΔx2ðtÞi in the x direction. The solid and dashed lines are power-law fits to the
data in the shaded regions. (d) Diffusion exponents γ averaged over x, y, and z directions versus the mean vortex-line spacing l ¼ L−1=2.
The error bars (barely visible for γ1) represent the standard deviations of the γ values for diffusion in the three axial directions.
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The time evolution of the vortices can be obtained through
a temporal integration of Eq. (1) (see details and videos in
the Supplemental Material [31], which includes Refs. [32–
34]). When two vortex filaments approach to have a
minimum separation less than 0.008 mm, we reconnect
them at the location of the minimum separation following
the procedures as detailed in Refs. [30,35]. We also inject a
randomly oriented vortex ring of radius Rin at a random
location in the computational box with a repetition time tin
to balance the cascade loss of the vortices [30]. Figure 1(a)
shows the evolution of the vortex tangle with tin ¼ 0.08 s.
The variation of the vortex-line density L (i.e., vortex
length per unit volume) is shown in Fig. 1(b). After about
10 s, L settles to a nearly constant level. This steady-state L
level can be tuned by varying tin.
To study vortex diffusion, we track randomly chosen

vortex-filament points and analyze their mean-square
displacement (MSD) along each axis (see Supplemental
Material [31]). Figure 1(c) shows the MSD of the vortices
in the x direction hΔx2ðtÞi ¼ h½xðt0 þ tÞ − xðt0Þ�2i in a
representative case, where t0 is the reference time when a
vortex-filament point is tracked and the angle brackets
denote an ensemble average of all the tracked points in the
steady state. Usually, a power-law scaling hΔx2ðtÞi ∝ tγ is
expected, where the exponent γ defines different diffusion
regimes, i.e., normal diffusion (γ ¼ 1) and anomalous
diffusion (superdiffusion at γ > 1 and subdiffusion at
γ < 1) [36]. Our data exhibit a clear superdiffusion regime
(γ1 ¼ 1.58) at small t and a normal diffusion regime
(γ2 ¼ 0.97) at large t. Simulations conducted at other L
also show similar behaviors. The derived γ1 and γ2 are
plotted in Fig. 1(d) as a function of the mean vortex-line
spacing l ¼ L−1=2. It is clear that γ1 is about 1.6 at all l
values. γ2 is around 1, but has sizable variations in the three
axial directions. These variations are caused by the reduced
sample numbers at large t, as well as the limited size of the
computational box (see Supplemental Material [31]).
Explanation on vortex-diffusion scaling.—

Superdiffusion has been observed in various systems, such
as hopping of cold atoms in an optical lattice [37] and
cellular transport in biological systems [38]. For systems
involving randomwalkers, the appearance of superdiffusion
is usually attributed to Lévy flights, i.e., occasional long-
distance hops of the walkers [39]. These flights lead to
power-law tails of the walkers’ displacement distribution
PðΔxÞ ∝ jΔxj−α, which is flat enough (i.e., α < 3) to cause
superdiffusion [40]. In He II, large displacements of the
vortices over short times can occur at the locations of vortex
reconnections [41]. However, we find that these reconnec-
tions always result in tails of the vortex displacement
distribution PðΔxÞ steeper than jΔxj−3 (see Supplemental
Material [31]). Therefore, they cannot account for the
observed vortex superdiffusion. On the other hand, super-
diffusion can emerge if the motion of the walkers is not
completely random but has extended temporal correlations

[40,42]. To see this, we write the MSD of a vortex-filament
point hΔx2ðtÞi in terms of its velocity vxðtÞ as [43]

hΔx2ðtÞi ¼ 2

Z
t

0

dt0

Z
t−t0

0

dt0hvxðt0Þvxðt0 þ t0Þi: ð2Þ

For a fully developed random tangle, the vortex-velocity
temporal correlation function Cxðt0Þ ¼ hvxðt0Þvxðt0 þ t0Þi
only depends on the lapse time t0. If Cxðt0Þ shows a power-
law scalingCxðt0Þ ∝ t0−β over a large time interval, hΔx2ðtÞi
would scale as hΔx2ðtÞi ∝ t2−β according to Eq. (2) and can
exhibit superdiffusion when β < 1. In Fig. 2(a), we show
the calculated Cxðt0Þ for a representative tangle with
l ¼ 0.16 mm. There is a clear power-law scaling with a
fitted exponent β ¼ 0.42, which leads to hΔx2ðtÞi ∝ t1.58,
matching nicely the superdiffusion exponent reported in
Fig. 1. Similar results are obtained for other cases at different
l, which confirms that the universal vortex superdiffusion at
small t is caused by the temporal correlation of the vortex
velocity. This correlation is an intrinsic feature of UQT.
The transition to the normal diffusion at large t was also

observed experimentally by Tang et al. [19]. They proposed
that this transition is caused by vortex reconnections,
which effectively randomize the motion of the participating
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FIG. 2. (a) Vortex-velocity temporal correlation function Cxðt0Þ
for a representative tangle exhibiting a power-law scaling that
leads to the observed superdiffusion. (b) hΔx2ðtÞi data for two
selected groups of vortex-filament points (i.e., blue circles and
red crosses), which encountered their first reconnection event in
the diffusion time intervals shaded by the respective colors.
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vortex-filament points and hence suppress their velocity
temporal correlation. To verify this view, we show the MSD
of two selected groups of vortex-filament points for the
case with l ¼ 0.195 mm in Fig. 2(b). These two groups
encountered their first reconnection event in the diffusion
time interval t ¼ 0.1–0.15 and t ¼ 0.6–0.65 s, respectively.
Obvious deviation from the superdiffusion scaling is
observed for each group following the reconnection event,
which clearly proves the causality between vortex recon-
nections and the transition toward the normal diffusion.
Finite-temperature effect.—At finite temperatures, the

vortices experience a drag force as they move through the
normal fluid due to scattering of the thermal quasiparticles
in He II [44]. The velocity of a vortex-filament point at s is
now given by [29,30]

ds=dt ¼ vsðsÞ þ αs0 × ðvn − vsÞ − α0s0 × ½s0 × ðvn − vsÞ�;
ð3Þ

where α and α0 are temperature-dependent mutual friction
coefficients [45], s0 is the unit tangent vector along the
filament, and vn is the normal-fluid velocity. We then
generate a steady-state vortex tangle using two distinct
methods. The first method is the same as the one adopted at

0 K, i.e., by randomly injecting small vortex rings in the
computational box with static normal fluid (i.e., vn ¼ 0).
The second method is via thermal counterflow as adopted
in the experiment by Tang et al. [19].
In He II, a counterflow can be generated by an applied

heat flux q, where the normal fluid moves in the heat flow
direction at a mean velocity Un ¼ q=ρsT, while the
superfluid moves oppositely at Us ¼ ðρn=ρsÞUn [28].
Here, ρ ¼ ρn þ ρs is the total density, and s is the He II
specific entropy [46]. To compare with the experiment
where the normal-fluid flow is laminar, we set vn ¼ Unêz
and vs as the sum of −Usêz and the induced velocity given
in Eq. (1). We then place a few randomly oriented seed
vortex rings in the computational box. These rings can
grow and reconnect, eventually leading to a fully developed
tangle [20]. A snapshot of such a tangle at T ¼ 1.6 K and
Un ¼ 5 mm=s is shown in Fig. 3(a), and the line-density
evolution is given in Fig. 3(b). In the steady-state time
window (i.e., 5–20 s), we track randomly selected vortex-
filament points and analyze their MSD in the directions
perpendicular to the counterflow. Representative data for
hΔx2ðtÞi are shown in Fig. 3(c). Again, a superdiffusion
regime is observed at small t, which transits to normal
diffusion at large t.
In Figs. 4(a) and 4(b), we collect the derived super-

diffusion exponent γ1 for tangles generated, respectively,
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by counterflow and ring injections at various l and T. It is
clear that γ1 is around 1.6 nearly independent of l, which is
in good agreement with the experimental observations [19].
We also see that γ1 increases by less than 0.3 from 1.1 to
1.9 K, which is hardly resolvable in the narrow temperature
range examined in the experiment. At a given T, the γ1
value for tangles produced by counterflow is slightly larger
than that for random tangles produced by ring injections.
This difference becomes more visible as T increases.
Interestingly, it has been known that the vortex tangle
produced by counterflow becomes increasingly anisotropic
as T increases [20]. This tangle anisotropy could be the
origin of the observed difference, which is a topic for future
research.
Discussion.—The weak temperature dependence of γ1

indeed reflects interesting physics. To explain it, we show
in Fig. 5 the normalized Cxðt0Þ=Cxð0Þ curves for vortex
tangles produced by counterflow at various T with l in the
range of 0.14–0.16 mm. The curve for a random tangle
produced by ring injections at 0 K with l ¼ 0.16 mm is
also included as a reference. Compared to the T ¼ 0 curve,
a major difference of the curves at finite T is that they
saturate to 1 at larger t0. This saturation, which corresponds
to ballistic motion of the vortices [i.e., hΔx2ðtÞi ∝ t2

according to Eq. (2)], is controlled by how the turbulent
energy decays. At 0 K, the turbulent energy can cascade to
scales smaller than l by exciting Kelvin waves on the
vortices [47]. These waves result in small-scale deforma-
tions of the vortices, which can cause rapid directional
change of the vortex velocity [30] and hence suppress the
velocity temporal correlation. As such, Cxðt0Þ at 0 K
remains far from saturation down to t0 ¼ 10−3 s. At finite
T, the mutual friction from the normal fluid damps out the
Kelvin waves and terminates the energy cascade at scales

comparable to l [48,49], which results in smoother
vortices. Therefore, the vortices can maintain their ballistic
motion to larger t0. The extension of the ballistic region first
makes the Cxðt0Þ=Cxð0Þ curve steeper in the power-law
region, leading to a larger exponent β as compared to the
0 K case. As T further increases, the power-law region
gradually shrinks and levels off, which reduces β. The
decrease in β then causes γ1 to gradually rise as observed
in Fig. 4.
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