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Heat transport in turbulent thermal convection increases with thermal forcing, but in almost all studies
the rate of this increase is slower than it would be if transport became independent of the molecular
diffusivities—the heat transport scaling exponent is smaller than the mixing-length (or “ultimate”) value of
1=2. This is due to thermal boundary layers that throttle heat transport in configurations driven either by
thermal boundary conditions or by internal heating, giving a scaling exponent close to the boundary-limited
(or “classical”) value of 1=3. With net-zero internal heating and cooling in different regions, the larger
mixing-length exponent can be attained because heat need not cross a boundary. We report numerical
simulations in which heating and cooling are unequal. As heating and cooling rates are made closer, the
scaling exponent of heat transport varies from its boundary-limited value to its mixing-length value.
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Thermally driven turbulence is prevalent in natural
phenomena and technological applications. Research on
its fundamental physics has focused primarily on the
canonical configuration of Rayleigh–Bénard convection
(RBC), where flow in a fluid layer is driven by a temper-
ature gradient maintained between the top and bottom
boundaries. However, many natural and technological
systems are not driven solely by heat fluxes across the
fluid’s boundaries—they are driven partly or entirely by
volumetric heat sources and/or sinks. Such internally
heated convection (IHC) can be driven by various mech-
anisms. The Earth’s mantle is heated by radioactive decay
[1–4], other planets and their satellites are heated by tidal
forces [5–7], large stars have convective cores driven by
thermonuclear reactions [8,9], and planetary atmospheres
absorb solar radiation [10,11]. In technological applica-
tions, fluids may be internally heated or cooled by chemical
reactions [12,13]. Other cooling mechanisms include radi-
ation and phase change, and heating and cooling mecha-
nisms can coexist.
Simple configurations have served as fundamental mod-

els for IHC [14], much as RBC is a fundamental model for
convection driven by boundary heat fluxes. Two IHC
models of uniformly heated fluid layers, differing only
in their boundary conditions, have received the most
attention, although far less than RBC. The first configu-
ration has an insulating bottom and an isothermal top, so all
heat flux is outward across the top. It has been studied
experimentally [15–19] and computationally [20–25], but

no three-dimensional (3D) direct numerical simulation
(DNS) of the turbulent regime has been reported previ-
ously. The second configuration has isothermal top and
bottom boundaries at equal temperatures, so heat flux is
outward across both boundaries. It too has been studied
experimentally [18,26–29] and computationally [25,27,30–
34], including one modern DNS study in 3D [35]. In both
of these models, certain bulk quantities connected to
turbulent heat transport show strong similarities to RBC.
Heat transport in RBC is captured by the dimensionless

Nusselt number (Nu), which is the ratio of total upward
heat transport to that by conduction alone. Of particular
interest is the dependence of Nu on the dimensionless
Rayleigh number (Ra), which is proportional to the dimen-
sional temperature difference across the layer. The asymp-
totic scaling of Nu as Ra → ∞ remains unsettled, with the
main predictions being Nu ∼ Ra1=3 or Nu ∼ Ra1=2; see
Ref. [36] for an overview. Although RBC experiments and
simulations have reached Ra values beyond 1015, it is
unclear whether such Ra are large enough to produce
asymptotic scaling of Nu. Many experiments show expo-
nents close to 1=3, and some show signs of a transition near
the upper end of their Ra ranges, but none have shown an
exponent close to 1=2 for ordinary RBC. The “mixing-
length” scaling Ra1=2 (often called “ultimate” scaling in the
context of RBC) is predicted by so-called mixing-length
arguments [37]; it occurs if and only if dimensional
transport becomes independent of molecular diffusivities.
The “boundary-limited” scaling Ra1=3 (often called
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“classical” scaling in RBC) has been attributed to mech-
anisms that prevent the thermal boundary layers from
becoming thin enough to conduct heat any faster than
this [38].
Boundary-limited and mixing-length scalings have

meaning for heat transport in IHC models also. In IHC
there are various reasonable ways to define a Nusselt
number that each give different values, whereas in RBC
these definitions coincide [14]. Below we describe ways to
define Nu and Ra for IHC such that, as in RBC, the
scalings Nu ∼ Ra1=3 and Nu ∼ Ra1=2 reflect boundary-
limited and mixing-length transport, respectively. For the
two IHC models described above in which heating is
uniform throughout the fluid, all past experiments and
simulations have displayed boundary-limited scalings of
heat transport, much like RBC. This is unsurprising since
average outward heat flux across the boundaries must equal
the internal generation, and all heat crossing a boundary
must first traverse a boundary layer, as with all heat flowing
into or out of the RBC domain. In systems with both
internal heating and cooling, however, transport from
cooled regions to heated regions need not cross a boundary
layer, so scalings might not be boundary limited.
Recent experiments and simulations [39–41] have

revealed that the mixing-length scaling of heat transport
is indeed possible in convection that is both heated and
cooled internally. In these studies the fluid is insulated on
all sides and subject to heating and cooling proportional to
ae−z=l − β, where z measures distance above the bottom
boundary, the other quantities are parameters, and β is
chosen so that net heating plus cooling is zero. There is
heating below the height z ¼ −l logðβ=aÞ and cooling
above it. The scale l over which heating decreases
exponentially with height is chosen small enough that
the heating region at the bottom is thinner than the cooling
region at the top. When l is very small, the heating region
concentrates at the bottom boundary, a boundary layer
forms, and transport scaling is boundary limited. When l is
large enough for the heating region to be thicker than such a
boundary layer, transport between the heating and cooling
regions displays mixing-length scaling. This is consistent
with the observation of mixing-length scaling in other
modifications of RBC that circumvent the boundary layers,
for instance using boundary roughness [42] or by decou-
pling the thermal and velocity boundary layers [43].
The configuration with net-zero heating and cooling in

which Refs. [39–41] observe mixing-length scaling is an
extreme case where no heat crosses the boundaries. At the
opposite extreme are the RBC model and the IHC models
with no cooling, where all transported heat must cross a
boundary, and where boundary-limited scalings are seen
at all accessible Ra values. In between these extremes,
however, lies any convective system with unequal rates of
heating and cooling. When heating exceeds cooling, say,
some internally produced heat is transported only to a

cooling region, but some must escape across a boundary
layer. Our primary aim here is to determine whether such
systems display boundary-limited scaling, mixing-length
scaling, or something in between.
In the present Letter we carry out 3D DNS of turbulent

convection driven by an internal heating-cooling profile of
the form ae−z=l − β, but unlike Refs. [39–41] net heating is
permitted. The bottom is insulating, but the top is made
isothermal so that heat can escape. Without cooling (β ¼ 0)
we find boundary-limited scaling as expected, and we
verify that spatially uniform heating gives similar results.
With β chosen to give net-zero heating and cooling, so
that our configuration is like Refs. [39–41] but with an
isothermal top, we find mixing-length scaling as expected.
We then carry out DNS over a range of Ra at various
smaller β values, each of which corresponds to a different
fraction of internally produced heat that must cross the top
boundary. Altering this fraction creates a transition between
boundary-limited and mixing-length scalings of convective
transport. In terms of the Nu and Ra defined below for
IHC, we observe approximate power laws Nu ∼ Raγ . As
the rate of cooling is raised from zero until it equals the rate
of heating, the exponent γ increases from about 0.3 to 0.5;
the analog in RBC would be a transition from classical to
ultimate scaling.
Convection with internal sources or sinks can be mod-

eled with the Oberbeck–Boussinesq approximation. The
layer height d and thermal diffusivity κ define a length scale
d and a timescale d2=κ. If the heating-cooling profile is
proportional to a rate Q with units of temperature per time,
d2Q=κ is a temperature scale. With these scales, the
dimensionless equations for velocity uðx; tÞ, pressure
pðx; tÞ, and temperature Tðx; tÞ are [14]

∇ · u ¼ 0; ð1aÞ

∂tuþ u ·∇u ¼ −∇pþ Pr∇2uþ PrRTẑ; ð1bÞ

∂tT þ u · ∇T ¼ ∇2T þHðzÞ; ð1cÞ
where z is the vertical component of the spatial coordinate
x, and the dimensional heating-cooling profile is QHðdzÞ.
The Prandtl number is Pr ¼ ν=κ, where ν is kinematic
viscosity. The other dimensionless control parameter is
R ¼ gαd5Q=κ2ν, where g is gravitational acceleration in
the −ẑ direction and α is the linear coefficient of thermal
expansion. This R differs from the Rayleigh number Ra of
RBC in that the temperature scale is d2Q=κ rather than
being the dimensional temperature difference Δ between
the boundaries, meaning that Ra ¼ RΔ=ðd2Q=κÞ. Here Ra
is a diagnostic quantity rather than a control parameter
since Δ is dynamically determined.
The dimensionless domain is periodic in both horizontal

directions with a period of Γ, and its vertical (z) extent is
[0, 1]. At the top (z ¼ 1) and bottom (z ¼ 0) boundaries we
enforce no-slip conditions by u ¼ 0. The top boundary is
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isothermal, and we call its temperature T ¼ 0. The bottom
boundary is insulating, so ∂zT ¼ 0 there.
Vertical heat transport has convective and conductive

contributions, which are proportional to the dimensionless
quantities ẑ · uT and −∂zT, respectively. The mean total
transport is hẑ · uT − ∂zTi, where angle brackets denote an
average over space and infinite time. This total transport is
fixed in our configuration; when heating exceeds cooling,
excess heat is transported to the top boundary at an average
rate that balances its production. This is seen by multiply-
ing Eq. (1c) against (1 − z) and averaging to find
hẑ · uT − ∂zTi ¼ hð1 − zÞHi, where the right-hand average
weights the local heating rate HðzÞ by the distance (1 − z)
that heat must travel to the top boundary. The mean
conductive transport h−∂zTi, on the other hand, must be
measured in simulations. Evaluating the vertical integral in
h−∂zTi shows it is equal (in our dimensionless variables) to
the mean temperature difference between the boundaries.
The top temperature is zero by definition, so mean
conductive transport is equal to the mean bottom temper-
ature T̄ð0Þ, where an overline denotes an average over the
horizontal directions and infinite time.
To reveal the analogies between transport in our

configuration and in RBC we define a Nusselt number
Nu that is proportional to the ratio of mean total transport
hẑ · uT − ∂zTi to mean conductive transport h−∂zTi. Since
total transport is fixed, and conductive transport is equal to
the mean bottom temperature Tð0Þ, normalizing Nu to be
unity in the static state TstðzÞ gives the definition
Nu ¼ Tstð0Þ=Tð0Þ. (The static state Tst is the steady
solution to the temperature equation with u ¼ 0.) The
diagnostic Rayleigh number Ra described above, whose
dimensional temperature scale is the mean temperature
difference between the boundaries in the flow, can be
written in terms of Nu as Ra ¼ R=Nu.
We simulate Eq. (1) using a second-order energy-

conserving finite difference code that has been bench-
marked previously [44]. The control parameter R is varied
from 105 to 1010 with Pr ¼ 1 fixed. The domain aspect
ratio Γ is chosen following Ref. [35] to approximate
large-domain values of Nu, for which the sufficiently large
Γ values are smaller when R is larger. The spatial
resolutions also follow Ref. [35], and we verify that the
spatiotemporal integral relations hj∇uj2i ¼ Rhẑ · uTi and
hj∇Tj2i ¼ hHTi, which follow from Eq. (1) [35,45], are
satisfied to within 1%. The mesh is horizontally uniform,
while in the vertical direction it has a clipped Chebyshev
distribution so that points cluster in the boundary layers.
We have simulated IHC with exponential heating-

cooling profiles of the form HðzÞ ¼ ae−z=l − β, as well
as with uniform heating H ¼ 1, and for comparison we
have simulated RBC in the same domains. In the dimen-
sionless exponential profiles, a ¼ 1=½lð1 − e−1=lÞ� so that
hae−z=li ¼ 1. The parameter β is fixed to various values
between β ¼ 0, at which there is nonuniform heating

throughout the layer, and β ¼ 1, where there is net-zero
heating and cooling since heating in the bottom region is
equal to cooling in the top region. The magnitude of the
dimensionless profile HðzÞ is partly arbitrary since the
dynamics are equivalent if H is scaled up by a factor while
R is scaled down by the same factor. These rescalings do
not affect Ra, so to compare results across different heating
profiles it is more meaningful if their Ra values match
rather than their R values. The simulated R range of
½105; 1010� corresponds to a different Ra range for each
different HðzÞ.
Figure 1 shows the dependence of Nu on Ra for IHC

with various heating-cooling profiles, as well as for RBC.
Three cases in the figure display best-fit scaling exponents
that are less than 1=3, which is typical of the boundary-
limited regime. The RBC simulations give Nu ∼ Ra0.29. In
the IHC cases that are heated throughout, uniform heating
gives Nu ∼ Ra0.29, and exponential heating without cool-
ing (β ¼ 0) givesNu ∼ Ra0.32. The latter scaling was found
with exponential length scales of both l ¼ 0.10 and
l ¼ 0.05, so we fix l ¼ 0.10 in further simulations where
β is varied, and the l ¼ 0.05 results are omitted from Fig. 1
for clarity. The boundary-limited exponents are similar to
those in past laboratory studies of IHC with an insulating
bottom [ [14], Table 3.1]. Such laboratory studies inevitably
have nonuniform heating, but our results suggest that
scaling exponents are not sensitive to the heating distri-
bution as long as there is no cooling. To compare with past
studies of IHC with equal top and bottom temperatures, one
can define Nusselt and Rayleigh numbers using the mean
temperature over the volume rather than over the bottom
boundary [14]. In these variables, 3D DNS with equal
boundary temperatures [35] has given an exponent of
0.26 (and 2D results are similar [34,35,46]) while our

FIG. 1. Nu versus Ra (left), and the same Nu compensated by
Ra1=3 (top right) and by Ra1=2 (bottom right) for RBC, uniform
internal heating, and exponential-heating cooling with length
scale l ¼ 0.1 and various β (see text).
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simulations with uniform and exponential heating give the
very close exponents of 0.28 and 0.27, respectively.
Whereas IHC with no cooling displays boundary-limited

scaling, IHC with net-zero heating and cooling displays
mixing-length scaling. In our simulations with β ¼ 1, the
best-fit scaling is Nu ∼ Ra0.51. This is essentially the
mixing-length exponent of 1=2, as was also found by
Refs. [39–41] with all boundaries insulating.
Having confirmed that heat transport displays boundary-

limited ormixing-length scalings in the extreme caseswhere
such behavior is expected based on prior studies, we turn to
convection driven by unequal rates of heating and cooling.
In particular, we have performed simulations with expo-
nential heating-cooling profiles having l ¼ 0.10 and
β ¼ 0.5, 0.7, 0.9, in addition to the β ¼ 0 and β ¼ 1 cases
for which we have already reported boundary-limited
and mixing-length scalings, respectively. At β ¼ 0, 0.5,
0.7, 0.9, 1, the corresponding heights belowwhichHðzÞ ≥ 0
are z0 ¼ 1, 0.30, 0.27, 0.24, 0.23, and ratios of total cooling
above z0 to total heating below z0 are 0, 0.38, 0.60, 0.86, 1.
The corresponding best-fit exponents of the Nu ∼ Raγ

scalings are γ ¼ 0.32, 0.35, 0.36, 0.44, 0.51. These expo-
nents span the range between the typical boundary-limited
value of 1=3 and the mixing-length value of 1=2.
Turning to the structure of the simulated flows, Fig. 2

shows instantaneous 3D temperature fields and the mean
temperature profiles TðzÞ for three of the extreme cases of
IHC: heating that is (a) uniform or (b) exponentially
distributed, and (c) net-zero heating and cooling. The
temperature profiles are normalized by their bottom tem-
peratures Tð0Þ. In case (a) the dominant temperature
structures are falling cold plumes, and correspondingly
TðzÞ shows an unstably stratified boundary layer at the top
but none at the bottom. As R is raised, increasingly strong
turbulent mixing makes the temperature more uniform
outside the boundary layer. In case (b), where the heating
is positive everywhere but concentrated near the bottom
boundary, there are not only falling cold plumes but rising
hot plumes also. This is reflected in the TðzÞ profiles of
Fig. 2(b), which have unstably stratified boundary layers at
both boundaries. The temperature change across the bottom
boundary layer shrinks, relative to the change across the top
boundary layer, but the bottom boundary layer is still
present at R ¼ 1010. Nonetheless, despite the fact that the
nonuniform heating in case (b) creates different flow
structures than the uniform heating in case (a), the
Nu-Ra scaling is quite similar in both cases, as described
above and reflected in Fig. 1. In the case of Fig. 2(c), where
there is a net-zero exponential heating-cooling profile, the
dominant temperature structures are rising hot plumes, and
the corresponding TðzÞ profiles have unstably stratified
thermal boundary layers at the bottom. Unlike in cases (a)
and (b) of Fig. 2, the mean temperature profile TðzÞ remains
far from isothermal in the turbulent interior, even with R as
large as 1010.

Much remains unknown about R → ∞ asymptotic
behavior of the configurations we have simulated. In
IHC without cooling, which displays boundary-limited
scalings in our simulations, it is unclear whether scaling
exponents will increase toward their mixing-length values
as the kinetic boundary layers become turbulent, as some
believe occurs in RBC. In IHC with net-zero heating and
cooling, we expect mixing-length scaling to persist as
R → ∞. This R-dependence would be consistent with the
scaling arguments of Refs. [40,41], which additionally
predict two different regimes of Pr-dependence. Two such
regimes were indeed found with insulating boundaries
[40,41], and we expect similar Pr-dependence with our
isothermal top boundary, although we have not varied Pr
here. In IHC where unequal heating and cooling produce
intermediate scaling exponents, as in our simulations with
β ¼ 0.7 and 0.9, there are thermal boundary layers at both
the top and bottom boundaries (cf. Fig. 2 of the
Supplemental Material [47]). The scaling of each boundary
layer is needed to predict the scaling of the total temper-
ature drop over the layer, which is the temperature differ-
ence used to define our Nusselt number. For the bottom

(a)

(b)

(c)

FIG. 2. Instantaneous temperature fields (left) at R ¼ 108

and normalized mean temperature profiles (right) at R ¼
105; 106; 107; 108; 109; 1010 (dark to light) for (a) uniform heat-
ing, (b) exponentially distributed heating with ðl; βÞ ¼ ð0.1; 0Þ,
and (c) net-zero exponential heating and cooling with
ðl; βÞ ¼ ð0.1; 1Þ. In the instantaneous temperature visualizations,
fluid is selectively made transparent to improve clarity.
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boundary layer, the scaling arguments of Refs. [40,41]
apply and predict free-fall scaling for the temperature drop.
This prediction merits future study, ideally in simulations
where both R and Pr are varied. For the top boundary layer,
the temperature drop is controlled by similar physics to
RBC, so its asymptotic scaling is just as opaque as the
asymptotic Nusselt number in RBC.
In summary, we have simulated convection in a fluid

layer driven by various distributions of internal heating and
cooling, as well as by heating alone. In configurations
where all produced heat must cross a boundary, and so must
traverse a boundary layer, the efficiency of heat transport is
boundary limited. This efficiency can be captured by a
Nusselt number that is a ratio of total transport to
conductive transport. In the boundary-limited regime, the
dependence of this Nusselt number on a properly defined
Rayleigh number has a scaling exponent close to 1=3, as in
the “classical” regime of RBC. In a configuration where
none of the produced heat must cross a boundary because
there is net-zero heating and cooling, we find a scaling
exponent close to 1=2, as in the conjectured “ultimate”
regime of RBC. However, neither of these regimes captures
convection driven by unequal heating and cooling in
different regions, which is typical of various real-world
systems such as planetary atmospheres. Our simulations
suggest that unequal heating and cooling can, depending on
their relative rates, produce any scaling exponent between
about 1=3 and 1=2.
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