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Giant Diffusion of Nanomechanical Rotors in a Tilted Washboard Potential
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We present an experimental realization of a biased optical periodic potential in the low friction limit. The
noise-induced bistability between locked (torsional) and running (spinning) states in the rotational motion
of a nanodumbbell is driven by an elliptically polarized light beam tilting the angular potential. By varying
the gas pressure around the point of maximum intermittency, the rotational effective diffusion coefficient
increases by more than 3 orders of magnitude over free-space diffusion. These experimental results are in
agreement with a simple two-state model that is derived from the Langevin equation through using
timescale separation. Our work provides a new experimental platform to study the weak thermal noise limit

for diffusion in this system.
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Thermal diffusion in a tilted periodic (also named
washboard) potential constitutes an archetypal model of
transport phenomena in nonequilibrium statistical physics
[1,2]. It describes a diverse range of systems, including
Josephson junctions [3], molecular motors [4], synchroni-
zation phenomena [5], and diffusion on crystal surfaces [6],
to name only a few.

Brownian particles moving in the tilted potential at
nonzero temperature exhibit two distinct well-characterized
limiting behaviors: locked and running states. The first
emerges when the potential wells are deeper than the
thermal energy scale, the diffusing particle remains in a
local minimum. In the latter, a sufficient tilt of the potential,
lowering its energy barrier, allows the particle to flow down
the potential wells. Depending on the system parameters
(friction, temperature, and tilt), both solutions may coexist,
and stochastic transitions between locked and running
states may occur. It has been shown, both experimentally
[4,7,8] and theoretically [9,10], that in this two-state
coexistence regime, the effective diffusion coefficient
can be enhanced by several orders of magnitude relative
to the free diffusion coefficient. However, this has only
been experimentally observed in the overdamped regime
which is by now a fully understood stochastic process [2].

To our knowledge, an experimental study of giant
diffusion in the strongly inertial (underdamped) regime
is still missing. The theoretical problem is also more
demanding in the underdamped and weak noise limits
because the usual expansion of the matrix continued
fraction [2] fails to converge well [11]. On these grounds,
this nonlinear stochastic system in the low-noise and low-
damping limits is still attractive [11].

We propose a simple experimental setup based on the
optical trapping of a nanodumbbell in a moderate vacuum.
A special feature of our experiment is that the friction
coefficient, being linearly proportional to the gas pressure
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P, can be tuned over several orders of magnitude.
Therefore, for a nearly constant temperature, Brownian
motion can move from the overdamped to the underdamped
regime. This makes the optical trapping setup a suitable
platform to study stochastic dynamics in the low-friction
regime [12-14].

The main focus of this Letter is the analysis of the
rotational diffusivity in the bistability region for an under-
damped stochastic mechanical nanorotor traveling in a
tilted periodic potential. We provide experimental confir-
mation of a giant diffusivity by tracking the rotational
motion of a single silica nanodimer. Because of the
experimentally achieved timescale separation, we show
that the effective diffusion is well described by a two-state
model for this nearly one-dimensional rotational motion.

The experimental setup consists of a vacuum optical
tweezer trapping a dielectric silica dumbbell made of two
nanospheres of nominal radius 68 &7 nm [15,16]. The
continuous wave trapping laser beam (wavelength, 1 =
1064 nm and power, 180 mW) passes through an objective
lens with a 0.8 numerical aperture, the polarization’s
ellipticity of which can be changed by a quarter-wave
plate. A detailed description of the experimental setup,
calibration, and processing procedures is given in the
Supplemental Material [17] including Refs. [18-32]. The
shape and the size of the dimer are assessed under linear
polarization, and correspond to an aspect ratio L/D = 1.8,
with two spheres of radius R, = 65.7 nm, where D = 2R,
and L is the major axis length of the dimer. Our detection
system is able to simultaneously record the particle’s center
of mass motion and its angular displacement.

The nanodimer experiences both a trapping force and a
torque, both of which are induced by elliptically polarized
light. In particular, when such an asymmetric Rayleigh
scatterer lies in the transverse (%, §) plane, corresponding to
0 = /2, the torque reads
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M = Mc— M, sin(2¢), (1)

where ¢ is the angle between the dimer main axis and the
lab’s horizontal % axis. Its time evolution is related to the
dimer rotation around the Z optical axis. M- and M, are
respectively the circular and linear contributions of the
optical torque which depend on the dimer polarizability
tensor and the laser beam polarization [17].

In alinearly polarized optical tweezer, where M - = 0, the
long axis of the dimer (i.e., in the direction of greatest
polarizability) will tend to align with the laser beam
polarization. This is because the polarizability of the dimer
along its long axis is greater than the polarizability
perpendicular to it. As a result, the dimer acts as a torsion
balance with a linear restoring torque, —2M ¢. The libration
pulsation Q; is well approximated in the low friction limit

I, < Q;)by+/2M /I, where I is the moment of inertia.

In contrast, for a circularly polarized trap, where
M; =0, the asymmetric particle undergoes a constant
torque, whatever its orientation ¢. As a result of the
continuous transfer of angular momentum, the particle will
spin about the Z axis at constant frequency, as given by
Qp =M¢/1,T,, where I'), is the rotation or torsional
vibration damping rate about the Z optical axis (see
Ref. [17] for its determination). Note that the rotation
frequency can exceed GHz, which allows us to study
material stresses due to centrifugal forces [33,34], measure
ultraweak torques [35,36], and examine quantum features
of rotation [37,38].

Figure I(a) illustrates the potential landscape and ori-
entational dynamics for different polarization states.
Considering the general case, for elliptical polarization,
the potential has a washboard shape: U(¢) = M sin(¢)—
M@, and one can observe running and locked states.
Below, we only consider elliptical polarization which is
held constant at ¢;,4 = 25°, the angle of the quarter-
wave plate.

The dynamics of an asymmetric Brownian particle
trapped under elliptically polarized light is six dimensional
with translational and rotational degrees of freedom coupled
to each other. This generally leads to a highly nonlinear
problem [36,39,40]. However, in the following, we show
that the giant diffusion phenomenon is well described by
one-dimensional rotational dynamics. Comparison between
the experiment and numerical simulations is made quanti-
tative provided that an additional term is added to the usual
extinction optical torque (x R[p x E;y], with p the dipole
moment and E;; the incident electric field). This extra term,
called scattering torque (x J[p x p*]), is due to the inter-
ference of the fields scattered by the particle [17,41]. This ¢
angle dynamics reproducing the stochastic jumps between
torsion and continuous rotation states is described by the
Langevin equation

1,p=~1T,p+M+ My, (2)
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FIG. 1. (a) Illustration of the energy landscape for the rotation

of the Brownian dimer around the optical axis for three different
tilts. When the polarization is linear (blue dotted line), the
potential is not tilted and the orientation of the dimer remains
in the locked state. Conversely, for a circular polarization (solid
blue line) the potential wells disappear. For elliptical polarization
(dashed line), the rotational motion can change from a running
state (spinning) to a locked state (torsional) and vice versa.
(b) Surface plot in log-log scales of the angular vibration and
translational power spectral densities as a function of the gas
pressure for a beam ellipticity of ¢;,, = 25° and an optical power
of 180 mW. The solid and dashed curves (red) represent the local
maxima of the PSD computed by Langevin simulations of
Eq. (2). The three grey horizontal curves at 0.41 mbar, 0.51 mbar,
and 0.61 mbar outline the two-state coexistence region where the
middle line denotes the maximum of intermittency.

where I, is the rotational damping rate and My =

\/2kgTI T, {(t) is the thermal torque with ((7) a
Gaussian noise of zero mean value. M is given by Eq. (1).

Figure 1(b) shows the position and orientation power
spectral densities as a function of pressure, along with the
numerical Langevin simulations (solid red curves). For
consistency, we also show the frequencies associated with
translational motions in the X, Y, and Z directions that are
independent of gas pressure. The observed nondegeneracy
of the transverse frequencies X, Y is expected for a
noncircularly polarized laser beam. In the high friction
limit, the torsional dynamics dominate the dimer orienta-
tion motion and their resonance frequencies remain con-
stant in relation to pressure. Conversely, the rotational
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dynamics is dominant in the low friction regime, i.e., at low
pressure, and its angular frequency, Qp, rises as the inverse
of the gas damping.

The red solid curves in Fig. 1(b) show a good agreement
between the experiment and one-dimensional simulations of
Eq. (2). One can also clearly see that the bistability region is
quantitatively well described by the model. The two locked
states observed in the spectral densities are also found in the
numerical simulations, and correspond to the fundamental
peak and its overtone. Although not within the scope of this
Letter, we do not preclude contributions with other angles
leading to coupling with extra motional degrees of freedom.
The experimental determination of the dimer size and shape
by the calibration procedure [17] is used for calculating the
moments of inertia and polarizabilities. The latter are further
supported numerically using COMSOL MULTIPHYSICS. We
find that 7, =2 x 1073 kgm?, M and M are, respec-
tively, of the order of 2 x 107>> Nmand 6 x 1072° Nm, in
good agreement with both experimental and numerical
results.

As mentioned above, in the calculation of optical torques
the contribution of scattering is included in addition to the
usual extinction contribution [41]. Since the polarization of
the trapping beam is not linear, this scattering torque is
crucial to reproduce quantitatively the experimental results,
particularly when the dimer spins. In many previous works,
the scattering torque was ignored because the rotational
Langevin equation was only qualitatively discussed. It is
worth noting that if the scattering torque is not taken into
account, the particle’s rotation speed is overestimated by
typically an order of magnitude for the actual dimer [17]
and much more for a spheroid (data not shown). Some
quantitative deviations between theory and experiment
appear at low pressure but without greatly affecting the
giant diffusion effect.

We now consider the quantitative study of this stochastic
nonequilibrium phenomenon. Figure 2 shows the time
traces of the angular velocity ¢ obtained by short time
Fourier transforms in the bistability region. In the locked
state, the mean angular velocity is (@), = 0. While the
mean rotational speed, (), in the running state increases
continuously with the pressure drop. The most noticeable
feature of the time traces is the two-state noise-induced
transitions, where the maximum of intermittency occurs in
the middle of the bistability region at about P = 0.56 mbar
[Fig. 1(b)].

We use the time traces of angular velocities to determine
the mean occupation times in the locked and running states.
Figure 3(a) shows the distributions P(z/(z)) of the mean
occupation times, recorded for different gas pressures.
These distributions decrease exponentially as expected
for a Kramers-like problem. Deeper insight into two-state
coexistence can be gained if we plot the pressure depend-
ence of the average occupancy times in the locked and
running states, as shown in Fig. 3(b), both for experimental
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FIG. 2. Time traces of the dimer angular velocity ¢ obtained by
short-time Fourier transform for the three pressures that are
shown as gray horizontal curves in Fig. 1(b).

and numerical data. It can be evidenced that when I, <
Q; (as in this case), the transition rate r; out of a locked
state (regardless of the final state, locked or running) is
independent of the friction coefficient, i.e., of the pressure.
This is in agreement with our observations [see Fig. 3(b)
red squares and solid line]. Besides, this value is well
approximated by the well-known Arrhenius law, 1/7;, =
rp ~Qp exp(—E,/kgT), E, being the barrier height given
by the potential difference between a minimum and the
lower neighboring maximum [42]. This offers insight into
how a temperature change affects the stability of the torque
state. A different behavior is observed for transitions from a
running to a locked state for low damping and finite
temperatures. This behavior is explained by the fact that
the rate rg is such that 1/7g = rg ~I",, o P [43]. Note that
some differences occurring at low pressure can be observed
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FIG. 3. (a) Probability distribution function of the occupation

time from the locked to running states P(z; ), red symbols, and
the running to locked states P(zg), blue symbols, for various
pressures where the bistability is observed. Exponential behav-
iors suggest that stochastic transitions between locked and
running states are thermally activated, following an Arrhenius-
type law. (b) Pressure dependence of the mean occupation times
in the locked and running states [symbols: experiment, solid line:
Langevin simulations, Eq. (2)].
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between the one-dimensional model and the experiment [as
seen in Fig. 3(b)]. They are not due to a time windowing
effect, but could arise from the coupling between other
rotational degrees of freedom, as seen below 0.45 mbar
with the appearance of an additional resonance in the
spectral densities [Fig. 1(b)].

In the rest of this Letter, we focus on the measurement of
the effective rotational diffusion coefficient, which is
defined by the Kubo relation

Dt = / ® 4t (o) — (@)][(0) - @))-

This coefficient satisfies the usual FEinstein relation
lim,_, , (¢*(2)) — (@())?> = 2D gt, where D can in prin-
ciple be enhanced by orders of magnitude over the free
coefficient diffusion D, at the crossover from locked to
running states. Interestingly, outside the region of bist-
ability, the power spectral density of ¢ allows for a
measurement of both Dy = kgT/T',[, and its related
timescale 1/T,. Surprisingly, we can derive a simple
two-state stochastic noise model to fit our experimental
results in the bistability region (see details in Sec. V.B of the
Supplemental Material [17]). Since the parameter range we
consider allows large timescale separations (1/Qp <
1/T’, < 1, 7), the spectral density of the rotation speed
in the region of bistability reads

Dy D¢
ool = T G)
5 7

where 'y = rp + 1y, is the total escape rate, corresponding
to the longest timescale of the system. From the timetraces
of the angular velocity ¢ (Fig. 2), we compute the power
spectral densities of the rotation velocity (defined as the
Fourier transform of the rotational velocity autocorrelation
function) in the coexistence regime, as shown in Fig. 4(a).
Using then Eq. (3), we can determine the effective diffusion
D relative to Dy, that is displayed in Fig. 4(b) as a
function of pressure. Note that I, and I'y are also
measured, allowing us to corroborate the values of the
nanodimer size and its aspect ratio. To go further into the
two-state model, we use the transition rates rp and ry
deduced from Fig. 3 to calculate D.. In our parameter
regime, the two-state model gives an expression that bears
much similarities with those developed in [11,44-46]

. ryr
Dg = <(p>%(r[,j'71;R)3’ (4)

where () is the average angular velocity taken only over
the running states of the whole temporal trace. Comparison
of the filled and open circles in Fig. 4(b) indicates that when
Eq. (4) is used with the results obtained from occupancy
times, good agreement is obtained with the diffusion
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FIG. 4. (a) Measured power spectral densities of the dimer

angular velocity (dots) and double Lorentzian fit [Eq. (3), solid
curves] at the boundaries of the bistable region (P = 0.653 mbar
in blue, P = 0.408 mbar in black), and at the pressure around
which the maximum of giant diffusion exists (P = 0.560 mbar in
red). The dashed line represents the free-space diffusion coef-
ficient Dy at P = 0.653 mbar, the double arrow displays the
excess of diffusion D¢ /Dy, while both the total escape rate I'y
and the rotational damping rate I';, are marked by vertical arrows.
(b) On the left axis. Pressure dependence of the effective diffusion
coefficient D in units of D, estimated by two methods: (i) data
from Fig. 4(a) are fitted by using Eq. (3), blue open circles, while
(ii) transition rates obtained from Fig. 3 are used to calculate D
from Eq. (4), green filled circles. The black solid line results from
the Langevin simulations [Eq. (2)]. On the right axis. Proportion
of the mean occupancy in the locked state (red squares: experi-
ment and black dashed line: Langevin simulations).

estimate by spectral densities by using Eq. (3). The
occupancy rate in the locked state defined as N_ =
(z1)/({zr) + (zg)) 1is represented by red squares in
Fig. 4(b). We observe that the giant increase in the effective
diffusion coefficient is roughly maximal at a pressure where
the states are evenly distributed.

In conclusion, we have observed in a very small pressure
range a giant increase of the diffusion coefficient in the
underdamped and weak noise limit. Carefully calculating
the optical torque, a reasonable quantitative agreement has
been obtained using a one-dimensional Langevin model.
This supports evidence that even though the real system
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dynamics has six dimensions, it can be reduced to a one-
dimensional system within at least some parameter
regimes. Cooling the translational (and possibly rotational)
degrees of freedom would mitigate the rotranslational
coupling [15,16], enabling ideally over a wide parameter
regime to reach the true one-dimensional Brownian nano-
rotor as described in Eq. (2). Thus, an optically levitated
stator rotator constitutes an outstanding platform to study
the issue of jump length distributions [47] and where its
dynamics can be controlled down to the quantum ground
state [48-50].
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