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Conventional lattice formulations of θ vacua in the 1þ 1-dimensional O(3) nonlinear sigma model
suffer from a sign problem. Here, we construct the first sign-problem-free regularization for arbitrary θ.
Using efficient lattice Monte Carlo algorithms, we demonstrate how a Hamiltonian model of spin-1

2
degrees

of freedom on a two-dimensional spatial lattice reproduces both the infrared sector for arbitrary θ, as well as
the ultraviolet physics of asymptotic freedom. Furthermore, as a model of qubits on a two-dimensional
square lattice with only nearest-neighbor interactions, it is naturally suited for studying the physics of θ
vacua and asymptotic freedom on near-term quantum devices. Our construction generalizes to θ vacua in all
CPðN − 1Þ models, solving a long-standing sign problem.
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Introduction.—The strong interactions of the standard
model described by quantum chromodynamics (QCD) pose
a challenging problem for classical computation. While
nonperturbative lattice Monte Carlo (MC) methods are a
powerful tool for studying static properties of strongly
coupled quantum field theories (QFTs) like QCD [1–4],
questions involving real-time dynamics, finite density, or
nontrivial θ vacua are still out of reach for lattice MC
methods due to severe sign problems [5,6].
Emerging quantum platforms provide an exciting possi-

bility for investigating QFTs in previously inaccessible
regimes. They are not directly affected by the sign problems
arising in classical lattice MC methods. However, bosonic
lattice field theories such as QCD have infinite-dimensional
local Hilbert spaces, while hardware degrees of freedom
(d.o.f.) are usually finite dimensional, mostly qubits. A
significant effort is underway to explore different embed-
dings of QFTs in qubits, with a multitude of ideas emerging
from bosonic field theory [7–10], nonlinear sigma models
(NLσMs) [11–22], and gauge theories [23–40].
The 1þ 1-dimensional O(3) NLσM has a long history as

a prototype for QCD, due to similarities such as asymptotic
freedom, dynamical transmutation, and the generation of a
nonperturbative mass gap, as well as a topological θ term.
The O(3) NLσM with a θ term is formally defined by the
continuum action

Sθ½ϕ⃗� ¼
1

g2

Z
d2xð∂μϕ⃗Þ2 þ iθQ½ϕ⃗�; ð1Þ

where ϕ⃗ ∈ R3 with jϕ⃗j2 ¼ 1, and

Q½ϕ⃗� ¼ 1

8π

Z
d2x εμνϕ⃗ · ð∂μϕ⃗Þ × ð∂νϕ⃗Þ ð2Þ

is the integer topological charge, making the theory 2π
periodic in θ. Both θ ¼ 0; π points are well understood,
analytically as well as on the lattice. Exact S matrices have
been conjectured for both θ ¼ 0 and θ ¼ π [41–44], and
their integrability has been confirmed using nonperturba-
tive lattice MC methods [45–47].
However, general, nonintegrable θ remain challenging.

It is believed that Sθ for each θ describes a unique
asymptotically-free QFT (see Fig. 1). As a topological

FIG. 1. RG flow diagram of O(3) NLσMs Sθ, defined in Eq. (1).
Sθ is a family of asymptotically free QFTs which all flow into the
trivial IR fixed point, except at θ ¼ π where it reaches the SUð2Þ1
WZW fixed point. At small jθ − πj, the RG flow of Sθ passes
arbitrarily close to the WZW fixed point, on its way to the trivial
fixed point.
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effect, θ cannot be studied directly in perturbation theory
about the free UV fixed point, but affects the IR physics at
strong coupling, as illustrated by the β functions shown in
Fig. 2. Nevertheless, some analytic progress has been made
by perturbing about the θ ¼ π integrable point [48].
Nonperturbatively, the inclusion of a θ term causes a sign
problem when discretizing the action in Eq. (1) on a two-
dimensional spacetime lattice. Even though improved
actions combined with cluster algorithms have been shown
to tame both cutoff effects and the sign problem to allow a
reliable extrapolation from modest volumes around θ ≈ 0
[49,50], and even fully solve the sign problem at θ ¼ π
[46], so far there are no known lattice MC methods which
allow a fully controlled study of arbitrary θ vacua.
Motivated by the prospect of quantum simulation to

address these challenges, we develop an embedding of
the O(3) NLσM at arbitrary θ into a two-dimensional
Heisenberg antiferromagnet, such that a controlled con-
tinuum limit can be taken. Remarkably, not only does this
model allow the systematic study of θ vacua on quantum
hardware, it also enables the first sign-problem-free algo-
rithm for classical computations at arbitrary θ. This extends
similar proposals put forward in Refs. [11,12,14,23] for the
classical and quantum simulation of θ ¼ 0; π theories.
Regularizing QFTs using explicitly finite-dimensional

local d.o.f. is a promising approach for quantum simulation.
Universality lets us understand this remarkable variety in
models with the ability to describe the same continuum
QFTs. In his seminal work on RG, Wilson showed how
continuum QFTs emerge at second-order critical points of
lattice models [51–53]. In this framework, the infinite-
dimensional continuum fields can arise naturally at long
distances from finite-dimensional microscopic local d.o.f.
While this approach is natural in the context of quantum
computation, universality has even been leveraged to circum-
vent sign problems that plague conventional lattice regula-
rizations. This was shown, for example, with the O(3) model
at finite density [11] and the CPð2Þ model at θ ¼ π [54].

Efficient cluster algorithms for CPðN − 1Þmodels have been
demonstrated [13], where a no-go theorem prevents efficient
cluster algorithms using the standard lattice action [55].
The qubit Hamiltonian.—In this Letter, we show that the

continuum limit of the 1þ 1-dimensional O(3) NLσM
with a θ term can be obtained from a spin-1

2
Heisenberg

antiferromagnet on a two-dimensional lattice with stag-
gered couplings

H ¼
X
ðx;yÞ

Jx;yS⃗x;y · S⃗xþ1;y þ J0
X
ðx;yÞ

S⃗x;y · S⃗x;yþ1; ð3Þ

where S⃗i are the spin operators acting on two-dimensional
Hilbert space at the site ðx; yÞ, Jx;y are the couplings along
the x direction, J0 is the coupling along the y direction,
and the two-dimensional lattice has dimensions LX × LY .
We consider the following two configurations for stagger-
ing the couplings:

Alternating∶ J0 > 0; Jx;y ¼ J½1þ ð−1Þxþyγ�;
Columnar∶ J0 < 0; Jx;y ¼ J½1þ ð−1Þxγ�; ð4Þ

where J > 0 is always antiferromagnetic, and γ is the
staggering parameter, as shown in Fig. 3. In both these
cases, the continuum limit of the O(3) NLσM with a θ
term can be obtained from odd or even LY , by taking the
limit LY → ∞ at fixed γLY such that LX ≫ LY ≫ 1 is
maintained.
To demonstrate the continuum limit, we need to recover

the physics of the theory described by Eq. (1) at all scales,
from the UV to the IR. For all θ, the continuum action Sθ,
defined in Eq. (1), describes an asymptotically free theory,
controlled in the UV by the fixed point of two free bosons.
The coupling g is a relevant coupling and thus drives the
theory away from the free UV fixed point into a strongly
coupled theory in the IR. While all Sθ theories flow out of
the same UV fixed point, nonperturbative effects lead to
different RG trajectories for different θ. Figure 1 shows a
conjectured RG flow diagram for the O(3) NLσM at

FIG. 2. Qualitative behavior of the β function for the O(3)
NLσM at various θ. The zero at g ¼ 0 corresponds to the free UV
fixed point. At θ ¼ π, the β function has an additional fixed point
in the IR, corresponding to the SUð2Þ1 WZW theory. At
intermediate θ, the β function βðg; θÞ is expected to interpolate
between these two curves [49].

FIG. 3. Two configurations for the staggered interactions,
described in Eq. (4), considered as a regularization of the
1þ 1-dimensional O(3) NLσM with a θ term. For the alternating
staggering, all couplings are antiferromagnetic, while for the
columnar case, the transverse coupling J0 is ferromagnetic and
J� ¼ Jð1� γÞ is antiferromagnetic. All interactions are of the
Heisenberg S⃗i · S⃗j type.
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arbitrary 0 ≤ θ ≤ π, and the corresponding β function is
shown in Fig. 2. For all θ ≠ π the theory flows to the trivial
massive fixed point in the IR. However, at θ ¼ π, the theory
undergoes a second-order phase transition and the low-energy
physics changes completely. The mass gap vanishes, and the
IR physics is described by a nontrivial conformal field theory
called the SUð2Þ1 Wess-Zumino-Witten (WZW) theory [56].
Interestingly, the two ideas of staggering [57,58] and
D theory [12] can be combined with the qubit Hamiltonian
of Eq. (3) to reproduce the physics of both IR and UV.
IR physics of the θ vacua.—For γ ¼ 0, the Hamiltonian

of Eq. (3) reduces to the ordinary Heisenberg antiferro-
magnet. For a fixed LY and γ ¼ 0, this model has been
studied in condensed matter literature as spin ladders, and is
known to be described by the O(3) NLσM at low energies
with θ ¼ 2πSLY [59–61]. Under this identification, the
translation-by-one symmetry of spins (S⃗x;y ↦ S⃗xþ1;y) on
the lattice scale becomes the charge conjugation symmetry
(ϕ⃗ ↦ −ϕ⃗) in the continuum. Therefore, a θ term can be
induced in the IR by introducing a staggered coupling
which breaks this symmetry [57,58,62]. Reference [58]
showed that for spin-S ladders with alternating staggering
θ ¼ 2πSLY ½1þ γfðLYÞ�, where fðLYÞ is a nonuniversal
function. Therefore the low-energy physics of the θ vacua
can be studied by varying the staggering parameter γ [63].
However, to obtain the continuum limit of the O(3) NLσM,
we must also obtain the physics of asymptotic freedom in
the UV, which we now turn to.
Regulating the UV physics and asymptotic freedom.—

The continuum limit of Sθ, in Eq. (1), can be obtained from
this Hamiltonian model by considering the limit LY → ∞
while maintaining LX ≫ LY ≫ 1. This approach has been
developed under the nameD theory [11,12,23], andworks as
follows. In the thermodynamic limit LX; LY → ∞, the
ground state of the Heisenberg antiferromagnet has Nel
orderingwith spontaneously broken global SU(2) symmetry,
with massless Goldstone mode excitations and diverging
correlation length ξ. Now, at finite LY , if the correlation
length ξðLYÞ remains larger than LY , the system effectively
becomes one dimensional. In this regime, the dimensionally
reduced system is described by the 1þ 1-dimensional O(3)
NLσM with an effective coupling g2 ∼ 1=LY . Due to
asymptotic freedom in the 1þ 1-dimensional model, the
system develops an exponentially large correlation length
ξ ∼ eαLY , for some constant α. This guarantees ξ ≫ LY asLY
is made larger and confirms the dimensional reduction
scenario [11,12,23]. Crucially, since the correlation length
diverges with LY , a continuum QFT can be defined in the
limit of LY large. Therefore, in this limit, the spin-1

2

Hamiltonian of Eq. (3) is a lattice regularization of the
O(3) NLσM with an arbitrary θ at all scales, including
asymptotic freedom in the UV.
Extension to CPðN − 1Þ models.—All methods in this

Letter are straightforward to extend from Oð3Þ ¼ CPð1Þ to
the entire family of CPðN − 1Þ models, which also allow

for a θ term. Both θ ¼ 0; π have been considered before in
the D theory formulation [13–15,54] using a Heisenberg
model of SUðNÞ spins, where the SUðNÞ representations
are chosen such that spontaneous symmetry breaking of the
type SUðNÞ → UðN − 1Þ occurs [64,65]. This ensures that
the continuum CPðN − 1Þ fields arise as Goldstone modes
as the continuum limit (LY → ∞) is taken. Since the
discussion of charge conjugation symmetry is identical
to that for the O(3) model, the staggering patterns of Eq. (4)
will induce θ ≠ 0; π in these constructions as well.
Methods.—In this Letter, we study the Hamiltonian

defined in Eq. (3) by performing MC sampling of the
partition function Z ¼ Tre−βH using a worm algorithm
[66–68] on a spacetime lattice at a finite inverse temperature
β. The dimensions LX × LY of the two-dimensional spatial
lattices were varied in the range 32 ≤ LX ≤ 1024 and
LY ¼ 3, 5, 7, with periodic boundary conditions in
LX and open boundary conditions in LY . (We choose
open boundary conditions in LY to avoid frustration.)
The couplings J ¼ jJ0j ¼ 1 were held fixed, and only the
staggering γ was varied in the range 0 ≤ γLY ≤ 2. The
Heisenberg model with this level of staggering is not
frustrated, and no sign problem occurs in the MC sampling
[69,70]. In our computations, the imaginary-time extent β
was also discretized into LT time steps of size ε, such that
β ¼ εLT . Strictly speaking, theHamiltonianmodel of Eq. (3)
is recovered only by extrapolating to the ε → 0 limit.
Alternatively, one can develop a cluster algorithm directly
in the continuous time limit [71]. However, since we are
interested in studying the continuum limit of a relativistic
field theory,we performMCcomputations at a fixed ε ¼ 1.0,
which gives a transfer matrix model with the same con-
tinuum limit.
For all combinations of the parameters we calculate the

second-moment correlation length ξ2ðLX; gÞ from the spin-
spin correlation function hS⃗x;y · S⃗x0;y0 i. This long distance
length scale has been extensively studied at θ ¼ 0 on two-
dimensional Euclidean square lattices with the standard
action [47,55]. To obtain results for a spacetime symmetric
box, we need to tune the imaginary time direction β such
that βc ¼ LX, where c is the (a priori unknown) speed of
light. This is achieved by performing computations at a
range of β and interpolating to the point where the spatial
and temporal second-moment correlation lengths are equal.
The calculation is then repeated with doubled volume 2LX
but fixed bare couplings gbare ¼ ðLY; J0; J; γÞ. This macro-
scopic change in scale LX → 2LX defines a discrete variant
of the β function, known as the step-scaling function [45]

FξðzÞ ¼
ξ2ð2LX; gbareÞ
ξ2ðLX; gbareÞ

; z ¼ ξ2ðLX; gbareÞ=LX; ð5Þ

where z defines a renormalized coupling. In the continuum
limit ξ2 → ∞, at constant z, the step-scaling function FξðzÞ
becomes a universal function, which uniquely characterizes
the corresponding QFT.
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Results.—Figure 4 shows numerical results for the step-
scaling function for the O(3) NLσM at various θ, computed
using the qubit Hamiltonian of Eq. (3). The results from
both alternating (left panel) and columnar (right panel)
staggering configurations are shown. To guide the reader,
we show three continuous curves: the perturbative pre-
diction (dotted line) and nonperturbative MC results
for θ ¼ 0 (black dashed line), and θ ¼ π (black solid line).
The perturbative curve is a two-loop computation [47] valid
in the UV (z ≫ 1) and shows asymptotic freedom near the
UV fixed point FðzÞ ¼ 2 at z → ∞. The θ ¼ 0 curve was
obtained with the standard lattice action in Ref. [47], and
shows the flow from the UV to the trivial IR fixed point
[Fξð0Þ ¼ 1 at z ¼ 0].
The θ ¼ π curve (black solid line) is a polynomial fit in

z−2n up to order n ¼ 5 to our MC results with γLY ¼ 0.
This shows the RG flow from the asymptotically free UV
fixed point at z ¼ ∞ to the SUð2Þ1 WZW fixed point in the
IR at z ¼ z�. We estimate the location of the nontrivial IR
fixed point to be z� ≈ 0.28 where Fðz�Þ ¼ 2, which is the
discrete equivalent of a vanishing β function. We empha-
size that the physics of all scales, from asymptotic free-
dom in the UV to the SUð2Þ1 WZW theory in the IR, is
reproduced by this model.
The remaining curves show new results for nonzero

γLY ∼ jθ − πj=π. The θ ¼ 0; π curves form a lower and
upper bound on all step-scaling curves 0 ≤ θ ≤ π. All
curves closely follow the perturbative two-loop calculation
(dotted line) at large z down to z ≈ 0.75. At lower values of
the renormalized coupling, nonperturbative effects start to
dominate, leading to divergent trajectories.

For small staggering γLY the curves closely track the
θ ¼ π curve. But since θ is a relevant perturbation about the
WZW fixed point, the RG trajectories cannot reach the
nontrivial fixed point at z� and ultimately have to flow away
to the trivial fixed point at z ¼ 0, consistent with the fact
that these theories are massive. These theories can be made
to pass arbitrarily close to the SUð2Þ1 WZW fixed point by
choosing smaller and smaller γLY, without the need for any
fine tuning, exemplified by the curve γLY ¼ 0.01 in Fig. 4.
This is the phenomenon of conformal walking, which is
also exhibited by QCD-like four-dimensional non-Abelian
gauge theories near the conformal window [72], or tech-
nicolor extensions of the standard model [49,73].
As the staggering γ is increased further, the step-scaling

curves trace out the entire area bounded by the two curves
θ ¼ 0; π, demonstrating that all θ vacua are contained in
this model. However, this only yields a qualitative relation-
ship between γLY and θ. Semiclassical results from large-
ðSLYÞ expansions [58,74] suggest that the relationship
should be linear, θ ¼ 2πSLY ½1þ γfðLYÞ� with fðLYÞ →
fð∞Þ approaching a finite constant in the large-LY limit.
Numerically, we observe that a value of γLY ¼ 1.0
(γLY ¼ 0.25) approximates the θ ¼ 0 curve with the
alternating (columnar) staggering. Additional data also
show a periodic reappearance of θ ¼ π around values of
γLY ¼ 2.0 (γLY ¼ 0.5). From this we estimate the asymp-
totic values fð∞Þ ≈ 1.0 for alternating and fð∞Þ ≈ 0.25 for
columnar staggering. The small discontinuities of the step-
scaling curves between different values of LY ¼ 3, 5, 7
suggest that the corrections to fðLYÞ at finite LY are
mild, especially considering that similar values of the

FIG. 4. Step-scaling function of the O(3) NLσMwith various θ, as defined in Eq. (5).We show step-scaling curves for different values of
γLY ∼ jθ − πj=π with odd LY , obtained from alternating (left) and columnar staggering (right), as defined in Eq. (4). For a fixed γLY , we
showMC results forLY ¼ 3 (solid line),LY ¼ 5 (dashed lines), andLY ¼ 7 (dotted lines). The dotted black curve is a two-loop perturbative
prediction [47]. The dashed black line is the step-scaling function for θ ¼ 0 obtained in Ref. [47]. The solid black line is anOðz−10Þ fit to the
γLY ¼ 0 data, which corresponds to the step-scaling function of the O(3) NLσMat θ ¼ π. These curvesmimic the RG flow diagram shown
in Fig. 1, and arrows on the θ ¼ 0; π curves indicate RG flow from UV to IR. All curves agree in the perturbative UV regime, while
nonperturbative effects from the θ term lead to divergent trajectories in the IR.
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renormalized coupling z ¼ ξ2ðLX; gÞ=LX were obtained
with drastically different lattice spacings (usually LX ¼
64 for the smaller LY compared with LX ¼ 1024 for the
larger LY).
Similar results are also observedwith even ladders, where

the staggering γ is a perturbation about the θ ¼ 0 theory.
Preliminary results from LY ¼ 2, 4, 6 with alternating and
columnar staggeringssuggest thatθ ¼ π canalsobeobtained
in this way. These results strongly motivate a conjecture: the
continuum limit (LY → ∞, with LY either odd or even) for
each fixed γLY is in fact a uniqueQFT corresponding to the
1þ 1-dimensional O(3) NLσM with a fixed θ,

θ≡ πLYð1þ γfÞ ðmod 2πÞ; ð6Þ

where f is a nonuniversal constant which depends on the
details of the model such as choice of couplings, staggering
configuration, andwhetherLY is odd or even.Whilewe have
provided strong evidence in favor of the identification in
Eq. (6), there are many paths forward to establish this more
rigorously. For example, odd and even LY could be used to
self-validate this conjecture, by showing that their step-
scaling functions agree by appropriately tuning γLY . Further,
a comparison with the approach of Ref. [50] using topo-
logical lattice actions would be very illuminating. In that
approach, θ appears as a manifestly topological parameter
and thus does not require an empirical identification like
Eq. (6). Any universal quantity computable in both regula-
rizations would allow the matching of θ with γLY , for
example, FðzÞ at a single fixed value of z. Topological
quantities such as susceptibilities and instanton distributions
have long been known to be divergent in the O(3) model
[73,75–78]. How these issues manifest in the qubit
Hamiltonian setup would be very interesting to clarify.
Conclusions.—In this Letter, we have shown how to

implement the 1þ 1-dimensional O(3) NLσM at arbitrary
θ using qubit degrees of freedom. While the motivation
behind this work is the quantum simulation of θ vacua on
near-term quantum hardware, interestingly, this result also
advances lattice computations of QFTs using classicalMC
methods. On the classical side, it provides the first sign-
problem-free MC algorithm for arbitrary θ. Our numerical
results, obtained with an efficient worm algorithm, indicate
that the entire range of θ vacua is contained in this model,
and we conjecture a simple prescription of how the
continuum limit can be reached and the physics at all
scales can be studied.
This construction enables real-time simulation of θ vacua

in the O(3) NLσM on near-term quantum hardware. These
theories can be regularized at any lattice spacing through an
embedding into a two-dimensional square lattice of qubits
with nearest-neighbor Heisenberg-type interactions. The
alternating staggering is a prime candidate for an analog
quantum simulation platform like ultracold atoms, with
uniform pairwise interactions, and couplings that can be

arranged through the trapping pattern shown in Fig. 5. On
digital quantum hardware like superconducting qubits or
trapped ions, either staggering can be implemented using
standard Suzuki-Trotter decompositions. For example, it
was shown in Ref. [79] that each trotterized nearest-

neighbor Heisenberg interaction eiεJxyS⃗x·S⃗y can be imple-
mented using just three CNOT gates. Interestingly, the limit
LX ≫ LY is also amenable to tensor network algorithms,
which would be powerful complementary approach to
lattice MC and quantum simulation going forward.
In lattice field theory, the 1þ 1-dimensional O(3) NLσM

has been long considered an ideal testbed for static proper-
ties of QCD, exhibiting many of its features, including
asymptotic freedom and θ vacua. Even more possibilities
open up once we have access to real-time dynamics using
quantum platforms. For instance, accessing nontrivial θ
would allow the study of inelastic scattering processes in an
asymptotically free theory, which would have been impos-
sible in the integrable θ ¼ 0; π theories.
Formulating QFTs using qubits can yield unexpected

advantages. For theO(3)NLσM, this approach has the rather
remarkable feature that it completely circumvents a sign
problem present in conventional lattice formulations of
the θ term, and is amenable to efficient cluster algorithms.
Extension to the entire family of CPðN − 1Þ models is
straightforward. This is encouraging on the path forward
toward studying QCD with novel classical and quantum
algorithms. Our results demonstrate that there is no funda-
mental obstruction to studying θ vacuawith discrete degrees
of freedom, but whether such ideas might one day even help
with the sign problems in QCD remains to be seen.
We learned about D theory from Shailesh

Chandrasekharan and Uwe-Jens Wiese and are grateful
to them for many enlightening conversations over the years.
We thank Martin Savage for inspiring discussions and
important feedback on the manuscript. We would also like
to acknowledge stimulating conversations with Tanmoy
Bhattacharya, Anthony Ciavarella, Daniel Nogradi,
Mendel Nguyen, and Mithat Ünsal on related matters.

FIG. 5. Proposed embedding of the O(3) NLσM with a θ term
into a two-dimensional array of ultracold atoms. The alternating
staggering described in Eq. (4) and Fig. 3 arises naturally from
distance-dependent antiferromagnetic interactions by deforming
a rectangular lattice.
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