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An analytic formula is given for the three-point energy correlator at leading order in maximally
supersymmetric Yang-Mills theory (N = 4 sYM). This is the first analytic calculation of a three-parameter
event shape observable, which provides valuable data for various studies ranging from conformal field
theories to jet substructure. The associated class of functions define a new type of single-valued
polylogarithms characterized by 16 alphabet letters, which manifest a Dg x Z, dihedral symmetry of
the event shape. With the unexplored simplicity in the perturbative structure of the three-point energy
correlator, all kinematic regions including collinear, squeezed and coplanar limits are now available.
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Introduction.—The energy correlator observable mea-
sures the energy deposited in multiple detectors as a
function of angles between the detectors. From the phe-
nomenological perspective, energy correlators probe the
energy flow and can be used as jet observables [1-6] for
precise tests of the standard model or new physics search.
From the practical side, energy correlators are perhaps the
simplest infrared safe event shape [7,8] to calculate
analytically. From the theory side, they belong to class
of observables probing the spatial correlation among flow
operators, which provides valuable data for understanding
the nature of quantum field theories [9-11].

The two-point energy correlator [12] is computed ana-
lytically to next-to-leading order in quantum chromodynam-
ics (QCD) [13,14] and next-to-next-to-leading order in
N = 4 supersymmetric Yang-Mills theory (sYM) [15,16],
numerically up to next-to-next-to-leading order in QCD [17-
26], and resummed to all orders in both the back-to-back [27—
32] and collinear limit [33-35]. Meanwhile the precision
study on multiparticle energy correlator has been initiated,
featuring the leading order prediction for the three-point
energy correlator (EEEC) in the triple-collinear limit [36].

The EEEC, which depends on three angles among the
detectors, captures the nontrivial shape dependence in the
scattering processes. The standard definition for the EEEC
as a differential cross section can then be recast as a five-
point correlation function:
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Here, the detector operator that measures the energy flux in
the direction 7 is given by an integrated stress-energy
tensor T, [9,37-40], £(ii) = [, drlim,_,r*n'Ty;(t =
7+ r, rit). The operators O (source) and O (sink) create
the final state, whose particles are detected by the two
calorimeters. The choice of the local operator O depends on
the physical problem. For e™e™ annihilation, O is given by
an electromagnetic current.

The energy correlator is an on-shell observable that bears
close relations to the off-shell correlation functions involv-
ing the stress-energy tensors. In view of this property,
previous studies in ' = 4 sYM theory employed various
shortcuts to obtaining the two-point energy correlator by
taking multiple discontinuities of Euclidean correlation
functions and by exploiting the superconformal symmetries
of the latter [15,16,41-43]. It remains unknown whether
such approaches are feasible for computing the higher-
point energy correlators. In this Letter, we adopt an on-shell
approach to obtain the EEEC from the super form factor for
protected scalar operator [44,45], benefiting from the
simplicity of matrix elements in N/ = 4 sYM. We present
the one-loop EEEC result for arbitrary angles, which is the
first analytic calculation of multiparticle correlation observ-
ables with full shape dependence.

Our result encodes valuable information on the function
space of the EEEC in perturbative quantum field theory:
the classifications of symmetries, symbol alphabets, and
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polylogarithms. These mathematical structures are studied
much more thoroughly in the context of scattering ampli-
tudes than finite observables in collider experiments. We
are strongly motivated to initiate the discussion on these
topics for the energy correlator observable, starting from
N = 4 sYM, as they provide powerful tools and experience
for QCD [46], which is phenomenologically relevant for
the cutting edge studies at LHC.

EEEC from four-point form factor—In N' = 4 sYM, we
may choose the source and sink to be scalar operators
that are the bottom component of the supermultiplet
of conserved currents. As such, they are natural analogs
of the electromagnetic current, and have fixed conformal
weight 2. The matrix element for producing a given on-
shell superstate from the vacuum defines the so-called form
factor [47-51]

/ dx e (X|0()0) = (27)*5*(q - px)Fx.  (2)

In perturbative theories, EEEC can be obtained from
the squared form factor by performing a weighted sum
over the on-shell external states. For convenience, we
normalize the event shape by a volume factor of the phase
space, thus defining a function H through EEEC(y, >,
x3) = (87%) x ||y A iy A ii5]| 7 H (7, 7y, 1i3), which we
can evaluate by carrying out the on-shell phase-space
integration while fixing the directions of three particles
in the final states

PN —
H(1y, 1y, 113) = Z /dnx52(”1—17i)
j.k)eX

Oiot (i j

L . . EEE,
X52(”2—Pj)52(”3—Pk)W|Fx

0

where i, j, and k run over all final-state particles. H
has the perturbative expansion H =, a*H® in the
't Hooft coupling. The born level event shape is a delta
function due to 3-body kinematic constraints, Hgy, =
8(||7iy A iy A Hisl)esc?(r1/2)esc? (x2/2)esc? (y3/2).  The
leading order that has nontrivial three-angle dependence
is O(a?), where the complication comes from the tree-level
four-point next-to-maximally-helicity-violating superma-
trix elements |F4|?; for details, see [52,53]. After summing
over superstates and symmetrization over the final-state
momenta, the squared four-point form factor can be
organized into a concise form:

4

|F4\2 _ q 1+ $23541 §23534
sym
512523534541 (4 S3415412  S1235341
+ perm(1,2,3,4), (4)

where the second and third term in the bracket correspond
to the next-to-maximally-helicity-violating contribution.

£(i)

FIG. 1. Graphical representation of the three-point energy
correlator: particles produced out of the vacuum by the
source are captured by the three detectors located at spatial
infinity in the directions of the unit vectors 7, 1,, and 7i5.
They can be mapped onto three points located on a circle
with radius |y| = tan(6/2) on the celestial sphere. The three
angles are parametrized by [sin(y,/2), sin(y,/2), sin(y3/2)] =
sin O[sin(¢h1/2). sin(s/2), sin(¢hy + 2)/2):

To compute the EEEC, we first apply topology identi-
fication to the squared matrix elements. With the EEEC
measurement functions, they can be decomposed into four
topologies. To proceed, we parametrize the kinematic
invariants by the energy fractions of three detected final-
state particles as well as the three angles (60, ¢, ¢,) as
depicted in Fig. 1. In particular, we switch to the following
set of angle parameters,

— ZQ — — ol
s = tan X T = e, T, = €2, (5)
such that both the matrix elements and phase space simplify
down. Integrating the four-particle phase space [54] against
the measurement functions, we are left with a set of twofold
integrals that are linearly reducible [55-58], which allows
us to compute directly in HYPERINT [59].

Symbol alphabets.—The EEEC can be expressed in a
frame independent manner as a function of three confor-
mally invariant variables:

Ciim qz(Pi'Pj) :<Pil’j><5/~fi>
Y 2(Q'Pi)(Q'Pj) <pi§i><pj§j>’
From the results of function H, we read off 16 symbol
alphabets, which contain two types of algebraic roots,

&) =aljl. (6

|A|=]m /\ﬁz/\ﬁ3||:|\/(1—u1—u2—u3)2—4u1u2u3|

|As| = (|1 Aty 1 A+ 13 Al || = [V A(E12:823.831)

where {u;} ={1-¢;} and A(a,b,c) =da*>+b*+ * —
2ab — 2ac — 2bc is the Kdllen function.

The representation of variables in Eq. (6) foresha-
dows a Dg dihedral symmetry of the EEEC, which can
be better visualized as we embed the kinematic data
lp)=2i—1),|&) =|2i+2) in a 2x6 matrix Z:
Z,=l|a) € CP!,

s
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FIG. 2. Embedding of the EEEC kinematics. Left: Three points
on the celestial sphere that we put on a unit circle with radius /s
centered at the origin. Right: Realization of this kinematic
configuration as a hexagon located on a unit circle.

Zi(l 1 111 1>’ ﬂa—ﬂbi<<a4b> (7)
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where |oo) = (0,1)7.

The geometric interpretation of the above formalism is
clear in the center of mass frame where ¢ = (¢°, 0,0, 0), so
that under stereographic projection the three vectors p; are
mapped onto a triangle (y;,¥;) = (7;,—1/n;,3) on the
celestial sphere. Let us further introduce a special point
(y1,91) = (n;,—1/n;) representing the center of the tri-
angle, whose location determined by the equation

(11)(41)(52)
(14)(21)(5I)

We may impose |I) = (0,1)7,|I) = (1,0)" and (I1) =
(al) = 1, and expand the kinematic space to include / (or
equivalently 7). Thus, we fix the gauge under which

1 1 1 1 1 1 0
Z|I = 1 —styy 71 =85 71T, =87y 1/ ©)

The kinematic space is mapped onto two similar triangles
whose circumcenter sit at the origin, which we display as a
hexagon located on a unit circle (see right panel of Fig. 2).

In this way, we identify all 16 EEEC alphabets with
products of Pliicker variables (ab), (al) as well as certain
homogeneous polynomials in the form

d(ap)(cd)(e) = (ad){eb)(cf) — (af)(cb){ed). (10)

Switching variables into three conformally invariant ratios,

(51)(62)(43)
(35)(16)(24)°

Z:—i w=

we could transform the alphabets into 16 polynomials with
all positive signs, which read

{w,1+w,y,1+y.z,14+z,w+z,1+w+z,
yt+z+tyzwH+y+z+yz, 1 +w+z+yz,
L+w+y+2z+yz,y+wy+y> +2z+2yz+y°z,
L+y+wy+y>+z+2yz+y%z,
L+w+y+wy+y*+z+2yz+ )%z,
L+w+y+wy+y2+2z+2yz + y*z}. (11)

Symmetries and functional basis.—Within our embed-
ding formalism, the EEEC exhibits a set of discrete
symmetries. First, we have Dg dihedral symmetries acting
on the hexagon coordinates Z,(a + 6 = a), which are

generated by dihedral flip 7: a—4 —a, cyclic permutation

c . . . P
0. a—a+ 2, and parity conjugation P: a—a + 3. In
addition, there is a residual Z, symmetry corresponding to
the exchange between two solutions to Eq. (8). It is
generated by an operation that we call reflection

R:({Ia)/{Ia+2))—>[({aa+3)(Ia+5))/({a+2a+5)x
(Ia+3))]. P and R flip the signs of A; and A,, respec-

tively, such that AlL - Al,Al—R>A1, while Az—P>A2’

AL A,

In light of these properties, we are ready to lift the one-
loop symbols into polylogarithmic functions. To start, we
shall identify a set of variables S that is closed under
{r,0,P,R}, such that {S,1+ S} factorize into polyno-
mials that cover the EEEC alphabet letters in Eq. (11).

Let us introduce these variables. For clarity, we switch to
a different gauge by performing a GL(2) x GL(1)% trans-
formation on Eq. (9),

1
Lixg ) (12)

1 1 1 0 1 1
le = _ XX3
Xg

1 -1 —
0 14x; 1 1 X2 1423

thus introducing four parameters (x;,x,,x3, x4), three of
which are independent.

Notice that the hexagon Z corresponds to the
Grassmannian Gr(2,6)/[GL(1)]?, which can be associated
with a As-cluster algebra, with a quiver being (x;, x,, x3).
Given this observation, we introduce 15 conformally
invariant ratios to cover the full set of X coordinates
[60,61], namely

(23)(14)  (34)(15)
T E T (TSR
o ltx 46)(13)
2T xnx (34)(16)°

P (14)(56) P (16)(24)
BT T sy ey BT 8 T ey 12y (14)

as well as their images under cyclic permutations.
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In addition, we introduce r; = 1/x4 = —[((14)(31))/
((13)(41))], whose images under Dy transformations form
a set of 12 cross ratios:

_{aa+3)(a+2I) _  (a+5a+2)(a+3I) (15)
e laa 2y da+3) T latsat3)lat2)

satisfying rai)ra+3, raiﬁa, a+6=a.

In terms of these ingredients, we can define §=
{ri,wi, 21, v1, =w /Wy, —|z,|*} plus their Dy images and
conclude that it has the desired properties, i.e., Lij »(—S)
(modulo products of logarithms) account for the one-loop
symbol letters for the EEEC.

Next we investigate the structures of physical singular-
ities, leading to a set of first-entry conditions that further
constrain the function space: (i) single valueness in the
physical domain away from the coplanar limit: for |z| =
|zo| = 1,|s| < 1 (or|s| > 1), the function must be free from
ambiguity in the principal values of azimuthal angles, i.e.,
invariant as 7, — e**"r,, 17, — e*?"1,; (ii) near triple-
collinear limit: the function is free from logarithmic
singularity in the triple-collinear limit as s — 0 or oo.

As a consequence, only 6 independent letters drawn
from the set {(w/w) = [T, [(1 +wi) /(1 +w)]. |z]* =
[v;/(vi11], 1 4 v;} can appear in the first entry. In particu-
lar, a parity odd letter (w/wy) = {[(s +71)(s + 75)(1 +
sT170)]/[(1 4+ s71)(1 + s72) (s + 7,7,)] } is allowed, which
distinguishes the EEEC function space from the standard
single-valued polylogarithms [62].

In conclusion, the one-loop EEEC function space com-
prises classical polylogarithms whose arguments are drawn
from the set {—S,1+ S} satisfying the first-entry con-
ditions. We observe that the final answer can be decom-
posed onto 14 such functions as well as their cyclic
permutations. Hence, the one-loop EEEC in N =4
sYM can be written in the a form that has manifest Dg
symmetry:

14
H/L\P:4(ﬁl,ﬁz, i) = Z b;F; + perm(riy, 7i, 7i3),  (16)
i=1

where b is a set of rational functions of (s.z,,7,), F
contains weight-1 and weight-2 polylogarithmic functions.
More explicitly,

I?E{f17f2,f3,917---7911}- (17)

Each member of F has a distinct signature under the
operation 7 and P, where {fi,f2,9r-4,93_11} and
{f1,93, 94,97, go} are odd under z and P, respectively.
The first three members f ;5 are weight-1 functions:

w
ﬂ:mi,.h:m@ﬁ fi=In(l+v,). (18)

The rest, g;_;; are weight-2 functions, among which g;_g
are characterized by the 9 As-cluster alphabets, depending
only on {w;, z;, v;} and their parity conjugation:

g1 = Lip(=1,)

g> = Lip(1 + ws3) + Lip (1 4 w3) + 2Li (—v3)
—Liy(1 +wy) —Liy(1 + ;) — 2Liy(—v;)

1+2

1+2

ga = Lip(1 +wy) = Lio (1 +wy) + Lin (1 4 w,)
— Liy (1 4 ;) + Liy (1 + w3) = Li (1 +3)

. . _ 1
g3 = Lix(=2) = Lir(=22) + Eln |22*In

gs = m* 96 = 1ﬂ2m 97 = lnmln |22
Wi Wi
g5 = In(1 + v3) In 2,2 = In(1 + v;) In |25 . (19)

g11 is the only member depending on {r;}, and the only one

exhibiting an odd Z, signature, g,,i - g1

1+ri
1+7

6
. . - 1
g1 = E Liy(—r;) — Liy(=7;) —|—§ln |rif* In (20)
Py

The last two members, gy j, are responsible for the homo-
geneous polynomials that appear as alphabet letters, namely
(12)(34)(56) — (32)(54)(16),(54)(12) (36) — (14)(32)(56):

1 . V_Vl 1 . wi
=—Lih|l——) —=Lip(1—— 21
) 12( Wl) 2 12< Wl) 2D

. 1
g0 = Lir(1 = |z2]%) +§ln 22)*In |1 — 2% (22)

In the ancillary files, we provide the explicit expressions
for the coefficients b, as well as the full analytic expression
for HJL\P:4 in terms of the {;;—variables. In Fig. 3, we
display the function H in various kinematic regions.

Special kinematics.—In the EEEC, physical singularities
emerge on the surfaces in the three-dimensional parameter
space displayed in Fig. 4. Our rational parametrization,
Eq. (5), makes it easy to access the three types of singular
regions where the EEEC is enhanced, namely the limit
where three detectors are collinear (s — or o), two of them
are collinear (z, — 1), or the three detectors are coplanar
(s = 1). We extract analytically the leading power asymp-
totic behaviours in all these limits.

The “triple-collinear limit” describes single jet events
where the all three angles are small {;; ~ 0. Taking s — 0,
we verify that it is a regular limit free from logarithmic
enhancement, such that H ~ (1/s?)G(t;,7,). Our expres-
sion for the function G agrees with [36], upon setting

z=[(1-7)/(A=1/n)], z=[(1-1/7)/(1 = ).
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FIG. 3. EEEC at leading order in A/ = 4 sYM. We display the
function H(s, 7, = e'¥1, 7, = ¢'??) in various kinematic regions.
Top: Distribution in (¢, ¢,) with s = constant. Bottom: Dis-
tribution in s with fixed (¢, ¢,)-

The “squeezed limit” corresponds to the regime where
we put two detectors on top of each other, {;, ~0,
$13 ~ 3 ~ €. We can access this limit by taking 7z, — 1,
keeping s, 7; fixed, and we find that the leading-power
contributions can be grouped into a simple form:

H

ty=0 6 [M} , (23)

{nl (F1+9)8

where the coefficient of the leading pole depends on a
single variable: { = —[s(1 —7;)%/(1 + s)*1].

The “coplanar limit” corresponds to the surface where
A, vanishes. In this regime, a soft particle recoils against
three coplanar hard particles, which are scattered into two
different half-planes. We extract the leading singular
behavior by expanding the function H around s =1,
recalling 7, = e, 7, = 2,

T1

FIG. 4. Kinematic regions for the EEEC and its singular
regimes.

28 9(—cos%cos%cos%)
T [sin%tsin 2 sin 142)3
2 2 2
X|1—s|ln (1_S>2tan2%tan2%tan2@ . (24)

The pole at s = 1 comes solely from the discontinuity of
the gg function in the region where —w; sit on the negative
real axis. The physical origin of the leading logarithms is
soft-collinear singularity. Lifting the result to (4 — 2¢)—
dimension, Eq. (24) can be recast into distributional terms
including §(1 — s) and plus distributions [63]. The e—IR
divergences in the delta function cancels with those coming
from the one-loop virtual contribution [49], making the
event shape finite at s = 1.

Since the s — 1 behavior of the EEEC in NV = 4 sYM is
analogous to that in QCD, we anticipate that the leading
Sudakov logarithms that appear in both theories are the
same, which can be resummed to all loop orders [27].

Outlook.—Our work opens the way for several applica-
tions and further studies. Our one-loop formula, Eq. (16),
constitutes the first analytic result for a event-shape
observable living in a three-dimensional parameter space.
Its symbol defines a set of 16 rational alphabet letters
describing a finite physical observable. By embedding the
kinematic space in a hexagon located on a unit circle, we
identify the symmetry properties and first-entry conditions
that provide key information on the function space. Further
studies on these mathematical structures and analytic
properties will be crucial for bootstrapping the observable
at higher perturbative order in supersymmetric gauge
theories or in QCD.

In addition to the leading asymptotic behaviors we
provide, our result contains information about subleading
powers as well. The data in the triple-collinear, squeezed,
and coplanar limits will shed new light on corresponding
operator product expansion limits of the light-ray operators
[64], thus making it possible to understand these limits at
arbitrary coupling [65,66]. In the meantime, the analysis in
each aforementioned kinematic limit can be generalized to
QCD, providing rich content for theoretical and phenom-
enological studies, as major progress has been achieved in
the triple-collinear limit [67-70].

Our approach to compute the EEEC in N =4 sYM
benefits from the simplicity of the squared super form
factor, which allows an integral representation in a concise
form. As novel research ideas emerged in recent studies on
the form factors by means of harmonic superspace for-
malism [71-73], modern amplitude techniques [74-77],
and integrability descriptions [78—80], they open the way to
probing the energy correlator observable at higher loop
order or finite coupling, as well as relevant generalization
of the event shape in quantum field theories [11,81-84].
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